Awesome-Python-Scripts/RSA_Communication/RSA.py

159 lines
4.6 KiB
Python
Raw Normal View History

#Modulus (N) bit length, k.
#OUTPUT: An RSA key pair ((N,e),d) where N is the modulus, the product of two primes (N=pq) not exceeding k bits in length;
# e is the public exponent, a number less than and coprime to (p1)(q1);
# and d is the private exponent such that e*d ≡ 1 mod (p1)*(q1).
##############################################################
#Select a value of e from 3,5,17,257,65537 (easy operations)
# while p mod e = 1
# p = genprime(k/2)
#
# while q mode e = 1:
# q = genprime(k - k/2)
#
#N = p*q
#L = (p-1)(q-1)
#d = modinv(e, L)
#return (N,e,d)
from random import randrange, getrandbits
import base64
class rsa():
def __init__(self, e=4, k=5):
self.e = [3, 5, 17, 257, 65537][e]
self.k = [128, 256, 1024, 2048, 3072, 4096][k]
def is_prime(self, n, tests=128):
if n == 2 or n == 3:
return True
if n <= 1 or n % 2 == 0:
return False
s = 0
r = n - 1
while r & 1 == 0:
s += 1
r //= 2
for _ in range(tests):
a = randrange(2, n - 1)
x = pow(a, r, n)
if x != 1 and x != n - 1:
j = 1
while j < s and x != n - 1:
x = pow(x, 2, n)
if x == 1:
return False
j += 1
if x != n - 1:
return False
return True
def genprime(self, length=1024):
p = 1
while len(bin(p))-2 != length:
p = list(bin(getrandbits(length)))
p = int(''.join(p[0:2] + ['1', '1'] + p[4:]), 2)
p += 1 if p % 2 == 0 else 0
ip = self.is_prime(p)
while not ip:
p += 2
ip = self.is_prime(p)
return p
def egcd(self, a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = self.egcd(b % a, a)
return (g, x - (b // a) * y, y)
def modinv(self, a, m):
g, x, y = self.egcd(a, m)
if g != 1:
raise Exception('modular inverse does not exist')
else:
return x % m
def get_creds(self, e, k):
N = 0
while len(bin(int(N)))-2 != k:
p = self.genprime(int(k/2))
while pow(p, 1, e) == 1:
p = self.genprime(int(k/2))
q = self.genprime(k - int(k/2))
while pow(q, 1, e) == 1 and q == p:
q = self.genprime(k - int(k/2))
N = p*q
L = (p-1)*(q-1)
d = self.modinv(e, L)
return p, q, (d, e, N)
def get_keys(self):
p, q, creds = self.get_creds(self.e, self.k)
return creds
def save_keys(self, filename="keys.k"):
keys = self.get_keys()
with open(filename, "w", encoding="utf-8") as file:
file.write(str(keys[0]) + "\n" + str(keys[1]) + "\n" + str(keys[2]))
def load_keys(self, filename="keys.k"):
with open(filename, "r", encoding="utf-8") as file:
f = file.read().split("\n")
d = int(f[0])
e = int(f[1])
n = int(f[2])
return (d, e, n)
def encrypt(self, ke, plaintext):
key, n = ke
b64_string = base64.b64encode(plaintext.encode("utf-8")).decode("utf-8")
ready_code = []
for char in list(b64_string):
ready_code.append('0' * (3 - len(str(ord(char)))) + str(ord(char)))
ready_code = int("1" + "".join(ready_code))
cipher = pow(ready_code, key, n)
return cipher
def decrypt(self, kd, ciphertext):
key, n = kd
plain_list = list(str(pow(ciphertext, key, n)))[1:]
plain = []
count = 1
temp = ""
for i in plain_list:
if count != 4:
temp += i
count += 1
else:
plain.append(temp)
temp = i
count = 2
plain.append(temp)
plain_list = plain
plain = base64.b64decode(''.join([chr(int(char)) for char in plain_list])).decode("utf-8")
return plain
encryption = rsa()
keys = encryption.get_keys()
d = keys[0]
e = keys[1]
n = keys[2]
print("key: \n" + str(e) + "/" + str(n))
while True:
choose = input("Encrypt (e)/ Decrypt (d) > ")
if choose == "e":
e, n = input("insert key > ").split("/")
to_encrypt = input("message to encrypt > ")
a = encryption.encrypt((int(e), int(n)), to_encrypt)
print(a)
elif choose == "d":
to_decrypt = input("message to decrypt > ")
a = encryption.decrypt((d, n), to_decrypt)
print(a)