mirror of
https://github.com/hastagAB/Awesome-Python-Scripts.git
synced 2025-01-18 07:17:00 +00:00
Add script to convert dataturks json to yolov3 format
This commit is contained in:
parent
65a7d781fb
commit
f55ffda813
13
Dataturks-to-YOLOv3/README.md
Normal file
13
Dataturks-to-YOLOv3/README.md
Normal file
|
@ -0,0 +1,13 @@
|
|||
# Convert Dataturks json to YOLO format
|
||||
The ```convert.py``` script downloads the images and converts the annotations from the Dataturks json file to YOLO format.
|
||||
## Usage
|
||||
1. Clone or download this repository.
|
||||
2. Create folders for saving images and YOLO config files.
|
||||
3. Execute:
|
||||
```
|
||||
python3 convert.py -d <path/to/dataturks.json> -i <directory/to/save/downloaded/images/> -y <directory/to/save/yolo/config/files/>
|
||||
```
|
||||
Note: ```-v``` flag can be used for detailed output.
|
||||
## Output
|
||||
1. Downloaded images along with their annotations in the specified directory.
|
||||
2. YOLO config files ```train.txt, obj.names, obj.data, yolov3.cfg``` saved in the specified directory.
|
165
Dataturks-to-YOLOv3/convert.py
Normal file
165
Dataturks-to-YOLOv3/convert.py
Normal file
|
@ -0,0 +1,165 @@
|
|||
import os
|
||||
import argparse
|
||||
import json
|
||||
import requests
|
||||
|
||||
def download_image(image_url, image_dir):
|
||||
'''Downloads image from image_url to image_dir if the image doesn't exist.'''
|
||||
|
||||
file_name = image_url.split('/')[-1]
|
||||
file_path = os.path.join(image_dir, file_name)
|
||||
if os.path.exists(file_path):
|
||||
verbose("[INFO]%s exists, skipping download" % file_name, v_flag)
|
||||
return file_path
|
||||
|
||||
response = requests.get(image_url)
|
||||
if response.status_code == 200:
|
||||
with open(file_path, 'wb') as file:
|
||||
file.write(response.content)
|
||||
verbose("[INFO]Downloaded %s" % file_name, v_flag)
|
||||
return file_path
|
||||
else:
|
||||
print('[WARNING]Unable to download image, skipping...')
|
||||
return False
|
||||
|
||||
def generate_annotation(label, data):
|
||||
'''Generate annotation from the json file.'''
|
||||
|
||||
image_width = data['imageWidth']
|
||||
image_height = data['imageHeight']
|
||||
|
||||
#if four coordinates of the bounding box is given
|
||||
if len(data['points']) == 4:
|
||||
xmin = image_width * min(data['points'][0][0], data['points'][1][0], data['points'][2][0], data['points'][3][0])
|
||||
ymin = image_height * min(data['points'][0][1], data['points'][1][1], data['points'][2][1], data['points'][3][1])
|
||||
xmax = image_width * max(data['points'][0][0], data['points'][1][0], data['points'][2][0], data['points'][3][0])
|
||||
ymax = image_height * max(data['points'][0][1], data['points'][1][1], data['points'][2][1], data['points'][3][1])
|
||||
|
||||
#if diagonal coordinates given
|
||||
else:
|
||||
xmin = int(data['points'][0]['x'] * image_width)
|
||||
ymin = int(data['points'][0]['y'] * image_height)
|
||||
xmax = int(data['points'][1]['x'] * image_width)
|
||||
ymax = int(data['points'][1]['y'] * image_height)
|
||||
|
||||
#calculating coodinate ratios as required for training yolo
|
||||
x_center = ((xmax + xmin) / 2.0) / image_width
|
||||
y_center = ((ymax + ymin) / 2.0) / image_height
|
||||
width = (xmax - xmin) / image_width
|
||||
height = (ymax - ymin) / image_height
|
||||
|
||||
return ("%.6f %.6f %.6f %.6f\n"% (x_center, y_center, width, height))
|
||||
|
||||
def convert_to_yolo_annotation():
|
||||
classes = []
|
||||
train_txt = []
|
||||
with open(dataturks_json_path, 'r') as file:
|
||||
lines = file.readlines()
|
||||
for line in lines:
|
||||
data = json.loads(line)
|
||||
if data['annotation'] == None:
|
||||
continue
|
||||
|
||||
file_path = download_image(data['content'], image_dir)
|
||||
|
||||
if not file_path:
|
||||
continue
|
||||
|
||||
annotation = ''
|
||||
|
||||
for item in data['annotation']:
|
||||
if item['label'] == None:
|
||||
continue
|
||||
|
||||
labels = item['label']
|
||||
if not isinstance(labels, list):
|
||||
labels = [labels]
|
||||
|
||||
for label in labels:
|
||||
if label not in classes:
|
||||
classes.append(label)
|
||||
|
||||
annotation = annotation + str(classes.index(label)) + ' ' + generate_annotation(label, item)
|
||||
|
||||
train_txt.append(str(os.path.abspath(file_path)) + '\n')
|
||||
|
||||
annotation_file = '.'.join(file_path.split('.')[:-1]) + '.txt'
|
||||
|
||||
with open(annotation_file, 'w') as f:
|
||||
f.write(annotation)
|
||||
verbose("[INFO]%s file generated." % annotation_file, v_flag)
|
||||
|
||||
with open(os.path.join(yolo_dir, 'train.txt'), 'w') as file:
|
||||
file.writelines(train_txt)
|
||||
verbose("[INFO]train.txt file generated.", v_flag)
|
||||
|
||||
return classes
|
||||
|
||||
def generate_yolo_cfg_files(classes):
|
||||
|
||||
with open(os.path.join(yolo_dir, 'obj.names'), 'w') as file:
|
||||
for item in classes:
|
||||
file.write(item + '\n')
|
||||
verbose("[INFO]obj.names file generated.", v_flag)
|
||||
|
||||
with open(os.path.join(yolo_dir, 'obj.data'), 'w') as file:
|
||||
file.write('classes = %s\ntrain = %s\nnames = %s\nbackup = %s' %
|
||||
(str(len(classes)),
|
||||
str(os.path.join(os.path.abspath(yolo_dir), 'train.txt')),
|
||||
str(os.path.join(os.path.abspath(yolo_dir), 'obj.names')),
|
||||
str(os.path.join(os.path.abspath(yolo_dir), 'backup/'))
|
||||
)
|
||||
)
|
||||
verbose("[INFO]obj.data file generated.", v_flag)
|
||||
|
||||
n_classes = len(classes)
|
||||
|
||||
n_filters = (n_classes + 5) * 3
|
||||
|
||||
with open(os.path.join(yolo_dir, 'yolov3.cfg'), 'w') as file:
|
||||
with open('yolov3.cfg.template') as template:
|
||||
lines = template.readlines()
|
||||
for i in range(len(lines)):
|
||||
lines[i] = lines[i].replace('#FILTER#', str(n_filters))
|
||||
lines[i] = lines[i].replace('#CLASS#', str(n_classes))
|
||||
file.writelines(lines)
|
||||
verbose("[INFO]yolov3.cfg file generated.", v_flag)
|
||||
|
||||
|
||||
def main():
|
||||
if not os.path.isdir(image_dir):
|
||||
print('[ERROR]The directory %s does not exist' % os.path.abspath(image_dir))
|
||||
return
|
||||
if not os.path.exists(dataturks_json_path):
|
||||
print('[ERROR]The specified json file does not exitst')
|
||||
return
|
||||
if not os.path.isdir(yolo_dir):
|
||||
print('[ERROR]The directory %s does not exist' % os.path.abspath(yolo_dir))
|
||||
return
|
||||
classes = convert_to_yolo_annotation()
|
||||
generate_yolo_cfg_files(classes)
|
||||
|
||||
|
||||
def arg_parser():
|
||||
parser = argparse.ArgumentParser(description = 'Converts Dataturks JSON format to yolo-darknet format.')
|
||||
parser.add_argument('-v', help = 'Verbose output.', action = 'store_true')
|
||||
parser.add_argument('-d', '--dataturks_json_path', required = True, help = 'Path to the Dataturks JSON file.')
|
||||
parser.add_argument('-i', '--image_dir', required = True, help = 'Path to the directory where the images with annotations will be stored.')
|
||||
parser.add_argument('-y', '--yolo_dir', required = True, help = 'Path to the directory where the files for training YOLO will be stored.')
|
||||
return parser.parse_args()
|
||||
|
||||
def verbose(message, v_flag):
|
||||
if v_flag == True:
|
||||
print(message)
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = arg_parser()
|
||||
global dataturks_json_path
|
||||
global image_dir
|
||||
global yolo_dir
|
||||
global v_flag
|
||||
dataturks_json_path = args.dataturks_json_path
|
||||
image_dir = args.image_dir
|
||||
yolo_dir = args.yolo_dir
|
||||
v_flag = args.v
|
||||
main()
|
789
Dataturks-to-YOLOv3/yolov3.cfg.template
Normal file
789
Dataturks-to-YOLOv3/yolov3.cfg.template
Normal file
|
@ -0,0 +1,789 @@
|
|||
[net]
|
||||
# Testing
|
||||
batch=1
|
||||
subdivisions=1
|
||||
# Training
|
||||
# batch=64
|
||||
# subdivisions=16
|
||||
width=416
|
||||
height=416
|
||||
channels=3
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
angle=0
|
||||
saturation = 1.5
|
||||
exposure = 1.5
|
||||
hue=.1
|
||||
|
||||
learning_rate=0.001
|
||||
burn_in=1000
|
||||
max_batches = 500200
|
||||
policy=steps
|
||||
steps=400000,450000
|
||||
scales=.1,.1
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=32
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
# Downsample
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=64
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=32
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=64
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
# Downsample
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=64
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=64
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
# Downsample
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
# Downsample
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
# Downsample
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=1024
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[shortcut]
|
||||
from=-3
|
||||
activation=linear
|
||||
|
||||
######################
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
filters=#FILTER#
|
||||
activation=linear
|
||||
|
||||
|
||||
[yolo]
|
||||
mask = 6,7,8
|
||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||||
classes=#CLASS#
|
||||
num=9
|
||||
jitter=.3
|
||||
ignore_thresh = .7
|
||||
truth_thresh = 1
|
||||
random=1
|
||||
|
||||
|
||||
[route]
|
||||
layers = -4
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[upsample]
|
||||
stride=2
|
||||
|
||||
[route]
|
||||
layers = -1, 61
|
||||
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=512
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=512
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=512
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
filters=#FILTER#
|
||||
activation=linear
|
||||
|
||||
|
||||
[yolo]
|
||||
mask = 3,4,5
|
||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||||
classes=#CLASS#
|
||||
num=9
|
||||
jitter=.3
|
||||
ignore_thresh = .7
|
||||
truth_thresh = 1
|
||||
random=1
|
||||
|
||||
|
||||
|
||||
[route]
|
||||
layers = -4
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[upsample]
|
||||
stride=2
|
||||
|
||||
[route]
|
||||
layers = -1, 36
|
||||
|
||||
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=256
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=256
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=256
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
filters=#FILTER#
|
||||
activation=linear
|
||||
|
||||
|
||||
[yolo]
|
||||
mask = 0,1,2
|
||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||||
classes=#CLASS#
|
||||
num=9
|
||||
jitter=.3
|
||||
ignore_thresh = .7
|
||||
truth_thresh = 1
|
||||
random=1
|
||||
|
Loading…
Reference in New Issue
Block a user