#Importing Libraries import numpy as np import tensorflow as tf import tensorflow.contrib.learn as learn import tensorflow.contrib.metrics as metrics #Importing Dataset mnist = learn.datasets.load_dataset('mnist') #Training Datasets data = mnist.train.images labels = np.asarray(mnist.train.labels, dtype=np.int32) test_data = mnist.test.images test_labels = np.asarray(mnist.test.labels, dtype=np.int32) feature_columns = learn.infer_real_valued_columns_from_input(data) #Applying Classifiers classifier = learn.DNNClassifier(feature_columns=feature_columns, n_classes=10,hidden_units=[1024,512,256]) classifier.fit(data, labels, batch_size=100, steps=1000) #Evaluating the Results classifier.evaluate(test_data, test_labels) accuracy_score = classifier.evaluate(test_data, test_labels)["accuracy"] print('Accuracy: {0:f}'.format(accuracy_score))