mirror of
https://github.com/hastagAB/Awesome-Python-Scripts.git
synced 2025-01-18 15:27:02 +00:00
db9217b0cb
* Added an indepedent RSA library Added an indepedent RSA library with no depedences (adapted to communication) * Created README.md Created README.md * Update README.md * Added project to README.md Added project "Independent RSA Communication Algorithm" to README.md Co-authored-by: Ayush Bhardwaj <classicayush@gmail.com>
159 lines
4.6 KiB
Python
159 lines
4.6 KiB
Python
#Modulus (N) bit length, k.
|
||
#OUTPUT: An RSA key pair ((N,e),d) where N is the modulus, the product of two primes (N=pq) not exceeding k bits in length;
|
||
# e is the public exponent, a number less than and coprime to (p−1)(q−1);
|
||
# and d is the private exponent such that e*d ≡ 1 mod (p−1)*(q−1).
|
||
##############################################################
|
||
#Select a value of e from 3,5,17,257,65537 (easy operations)
|
||
# while p mod e = 1
|
||
# p = genprime(k/2)
|
||
#
|
||
# while q mode e = 1:
|
||
# q = genprime(k - k/2)
|
||
#
|
||
#N = p*q
|
||
#L = (p-1)(q-1)
|
||
#d = modinv(e, L)
|
||
#return (N,e,d)
|
||
|
||
from random import randrange, getrandbits
|
||
import base64
|
||
|
||
class rsa():
|
||
|
||
def __init__(self, e=4, k=5):
|
||
self.e = [3, 5, 17, 257, 65537][e]
|
||
self.k = [128, 256, 1024, 2048, 3072, 4096][k]
|
||
|
||
def is_prime(self, n, tests=128):
|
||
if n == 2 or n == 3:
|
||
return True
|
||
if n <= 1 or n % 2 == 0:
|
||
return False
|
||
s = 0
|
||
r = n - 1
|
||
while r & 1 == 0:
|
||
s += 1
|
||
r //= 2
|
||
for _ in range(tests):
|
||
a = randrange(2, n - 1)
|
||
x = pow(a, r, n)
|
||
if x != 1 and x != n - 1:
|
||
j = 1
|
||
while j < s and x != n - 1:
|
||
x = pow(x, 2, n)
|
||
if x == 1:
|
||
return False
|
||
j += 1
|
||
if x != n - 1:
|
||
return False
|
||
return True
|
||
|
||
def genprime(self, length=1024):
|
||
p = 1
|
||
while len(bin(p))-2 != length:
|
||
p = list(bin(getrandbits(length)))
|
||
p = int(''.join(p[0:2] + ['1', '1'] + p[4:]), 2)
|
||
p += 1 if p % 2 == 0 else 0
|
||
|
||
ip = self.is_prime(p)
|
||
while not ip:
|
||
p += 2
|
||
ip = self.is_prime(p)
|
||
|
||
return p
|
||
|
||
def egcd(self, a, b):
|
||
if a == 0:
|
||
return (b, 0, 1)
|
||
else:
|
||
g, y, x = self.egcd(b % a, a)
|
||
return (g, x - (b // a) * y, y)
|
||
|
||
def modinv(self, a, m):
|
||
g, x, y = self.egcd(a, m)
|
||
if g != 1:
|
||
raise Exception('modular inverse does not exist')
|
||
else:
|
||
return x % m
|
||
|
||
def get_creds(self, e, k):
|
||
N = 0
|
||
while len(bin(int(N)))-2 != k:
|
||
p = self.genprime(int(k/2))
|
||
while pow(p, 1, e) == 1:
|
||
p = self.genprime(int(k/2))
|
||
q = self.genprime(k - int(k/2))
|
||
while pow(q, 1, e) == 1 and q == p:
|
||
q = self.genprime(k - int(k/2))
|
||
N = p*q
|
||
L = (p-1)*(q-1)
|
||
d = self.modinv(e, L)
|
||
return p, q, (d, e, N)
|
||
|
||
def get_keys(self):
|
||
p, q, creds = self.get_creds(self.e, self.k)
|
||
return creds
|
||
|
||
def save_keys(self, filename="keys.k"):
|
||
keys = self.get_keys()
|
||
with open(filename, "w", encoding="utf-8") as file:
|
||
file.write(str(keys[0]) + "\n" + str(keys[1]) + "\n" + str(keys[2]))
|
||
|
||
def load_keys(self, filename="keys.k"):
|
||
with open(filename, "r", encoding="utf-8") as file:
|
||
f = file.read().split("\n")
|
||
d = int(f[0])
|
||
e = int(f[1])
|
||
n = int(f[2])
|
||
return (d, e, n)
|
||
|
||
def encrypt(self, ke, plaintext):
|
||
key, n = ke
|
||
b64_string = base64.b64encode(plaintext.encode("utf-8")).decode("utf-8")
|
||
ready_code = []
|
||
for char in list(b64_string):
|
||
ready_code.append('0' * (3 - len(str(ord(char)))) + str(ord(char)))
|
||
ready_code = int("1" + "".join(ready_code))
|
||
cipher = pow(ready_code, key, n)
|
||
return cipher
|
||
|
||
def decrypt(self, kd, ciphertext):
|
||
key, n = kd
|
||
plain_list = list(str(pow(ciphertext, key, n)))[1:]
|
||
plain = []
|
||
count = 1
|
||
temp = ""
|
||
for i in plain_list:
|
||
if count != 4:
|
||
temp += i
|
||
count += 1
|
||
else:
|
||
plain.append(temp)
|
||
temp = i
|
||
count = 2
|
||
plain.append(temp)
|
||
plain_list = plain
|
||
plain = base64.b64decode(''.join([chr(int(char)) for char in plain_list])).decode("utf-8")
|
||
return plain
|
||
|
||
encryption = rsa()
|
||
keys = encryption.get_keys()
|
||
|
||
d = keys[0]
|
||
e = keys[1]
|
||
n = keys[2]
|
||
|
||
print("key: \n" + str(e) + "/" + str(n))
|
||
|
||
while True:
|
||
choose = input("Encrypt (e)/ Decrypt (d) > ")
|
||
if choose == "e":
|
||
e, n = input("insert key > ").split("/")
|
||
to_encrypt = input("message to encrypt > ")
|
||
a = encryption.encrypt((int(e), int(n)), to_encrypt)
|
||
print(a)
|
||
elif choose == "d":
|
||
to_decrypt = input("message to decrypt > ")
|
||
a = encryption.decrypt((d, n), to_decrypt)
|
||
print(a)
|