mirror of
https://github.com/hastagAB/Awesome-Python-Scripts.git
synced 2025-03-28 00:16:41 +00:00
60 lines
3.1 KiB
Python
60 lines
3.1 KiB
Python
""" I have used pycaw by Andre Miras at https://github.com/AndreMiras/pycaw
|
|
To control audio. It is an open-source module which can be installed by --> pip install pycaw
|
|
"""
|
|
import math
|
|
import cv2
|
|
import time
|
|
import numpy as np
|
|
import HTrack as ht
|
|
from comtypes import CLSCTX_ALL
|
|
from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume
|
|
|
|
height = 720 # height of webwindow
|
|
width = 1080 # width of webwindow
|
|
cap = cv2.VideoCapture(0) # using default system web cam 0
|
|
cap.set(3, width) # 3 is a index specifying width
|
|
cap.set(4, height) # 4 is a index specifying height
|
|
prevTime = 0
|
|
detector = ht.handDetector(detectionCon=0.7) # we need to detect hand more precisely
|
|
devices = AudioUtilities.GetSpeakers() # instantiating system speakers as objects
|
|
interface = devices.Activate(IAudioEndpointVolume._iid_, CLSCTX_ALL, None) # activating the interface to control volume
|
|
volume = interface.QueryInterface(IAudioEndpointVolume)
|
|
rangeVol=volume.GetVolumeRange() # volume range for my system is found to be -96 to 0
|
|
volLeast=rangeVol[0]
|
|
volHigh=rangeVol[1]
|
|
vol=volLeast #initialising volume to least volume
|
|
volBar=400 #initialising volume bar
|
|
while True:
|
|
success, img = cap.read() # reading the image
|
|
img=detector.drawHands(img) # detecting the hands
|
|
lmList=detector.getPositions(img) # finding landmarks of detected hands
|
|
if len(lmList)!=0:
|
|
# print(lmList[8],lmList[12])
|
|
x1,y1=lmList[8][1],lmList[8][2]
|
|
x2,y2=lmList[12][1],lmList[12][2]
|
|
cx,cy=(x1+x2)//2,(y1+y2)//2
|
|
cv2.circle(img,(x1,y1),10,(170,153,255),cv2.FILLED) # drawing circle around index finger
|
|
cv2.circle(img,(x2,y2),10,(170,153,255),cv2.FILLED) # drawing circle around middle finger
|
|
cv2.circle(img,(cx,cy),10,(170,153,255),cv2.FILLED) # drawing circle around center point of both fingers
|
|
cv2.line(img,(x1,y1),(x2,y2),(25,102,180),2)
|
|
distance=math.dist([x1,y1],[x2,y2])
|
|
# print(distance) # range of distance found to be 25 and 150
|
|
vol=np.interp(distance,[25,150],[volLeast,volHigh]) # To interpolate distance between index and middle fingers to the volume of system
|
|
volBar=np.interp(distance,[25,150],[400,100]) # To interpolate distance between index and middle fingers to the volume bar length
|
|
volume.SetMasterVolumeLevel(vol, None)
|
|
print(int(distance),vol)
|
|
if distance<25:
|
|
cv2.circle(img,(cx,cy),10,(0,0,120),cv2.FILLED) # indicating volume is 0 bby changing color of center circle
|
|
#drawing volume bar
|
|
cv2.rectangle(img,(80,100),(60,400),(230,153,0),2) # outer rectangle
|
|
cv2.rectangle(img,(80,int(volBar)),(60,400),(150,153,0),cv2.FILLED) # actual volume
|
|
cv2.putText(img,"Volume",(40,420),cv2.FONT_HERSHEY_SIMPLEX,0.5,(149,100,149),2)
|
|
|
|
currTime = time.time()
|
|
fps = 1/(currTime - prevTime) # using time to get timestamp of previous iteration and current iteration to know the frames per second
|
|
prevTime = currTime
|
|
cv2.putText(img, str(int(fps)), (30, 40), cv2.FONT_HERSHEY_PLAIN, 2, (255, 255, 0), 3) # writing FPS on screen
|
|
cv2.imshow("Image", img)
|
|
cv2.waitKey(1)
|
|
|