Awesome-Python-Scripts/RSA_Communication/RSA.py
dec0 db9217b0cb
Added Independent RSA Communication Algorithm (#199)
* Added an indepedent RSA library

Added an indepedent RSA library with no depedences (adapted to communication)

* Created README.md

Created README.md

* Update README.md

* Added project to README.md

Added project "Independent RSA Communication Algorithm" to README.md

Co-authored-by: Ayush Bhardwaj <classicayush@gmail.com>
2020-10-27 09:50:22 +05:30

159 lines
4.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#Modulus (N) bit length, k.
#OUTPUT: An RSA key pair ((N,e),d) where N is the modulus, the product of two primes (N=pq) not exceeding k bits in length;
# e is the public exponent, a number less than and coprime to (p1)(q1);
# and d is the private exponent such that e*d ≡ 1 mod (p1)*(q1).
##############################################################
#Select a value of e from 3,5,17,257,65537 (easy operations)
# while p mod e = 1
# p = genprime(k/2)
#
# while q mode e = 1:
# q = genprime(k - k/2)
#
#N = p*q
#L = (p-1)(q-1)
#d = modinv(e, L)
#return (N,e,d)
from random import randrange, getrandbits
import base64
class rsa():
def __init__(self, e=4, k=5):
self.e = [3, 5, 17, 257, 65537][e]
self.k = [128, 256, 1024, 2048, 3072, 4096][k]
def is_prime(self, n, tests=128):
if n == 2 or n == 3:
return True
if n <= 1 or n % 2 == 0:
return False
s = 0
r = n - 1
while r & 1 == 0:
s += 1
r //= 2
for _ in range(tests):
a = randrange(2, n - 1)
x = pow(a, r, n)
if x != 1 and x != n - 1:
j = 1
while j < s and x != n - 1:
x = pow(x, 2, n)
if x == 1:
return False
j += 1
if x != n - 1:
return False
return True
def genprime(self, length=1024):
p = 1
while len(bin(p))-2 != length:
p = list(bin(getrandbits(length)))
p = int(''.join(p[0:2] + ['1', '1'] + p[4:]), 2)
p += 1 if p % 2 == 0 else 0
ip = self.is_prime(p)
while not ip:
p += 2
ip = self.is_prime(p)
return p
def egcd(self, a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = self.egcd(b % a, a)
return (g, x - (b // a) * y, y)
def modinv(self, a, m):
g, x, y = self.egcd(a, m)
if g != 1:
raise Exception('modular inverse does not exist')
else:
return x % m
def get_creds(self, e, k):
N = 0
while len(bin(int(N)))-2 != k:
p = self.genprime(int(k/2))
while pow(p, 1, e) == 1:
p = self.genprime(int(k/2))
q = self.genprime(k - int(k/2))
while pow(q, 1, e) == 1 and q == p:
q = self.genprime(k - int(k/2))
N = p*q
L = (p-1)*(q-1)
d = self.modinv(e, L)
return p, q, (d, e, N)
def get_keys(self):
p, q, creds = self.get_creds(self.e, self.k)
return creds
def save_keys(self, filename="keys.k"):
keys = self.get_keys()
with open(filename, "w", encoding="utf-8") as file:
file.write(str(keys[0]) + "\n" + str(keys[1]) + "\n" + str(keys[2]))
def load_keys(self, filename="keys.k"):
with open(filename, "r", encoding="utf-8") as file:
f = file.read().split("\n")
d = int(f[0])
e = int(f[1])
n = int(f[2])
return (d, e, n)
def encrypt(self, ke, plaintext):
key, n = ke
b64_string = base64.b64encode(plaintext.encode("utf-8")).decode("utf-8")
ready_code = []
for char in list(b64_string):
ready_code.append('0' * (3 - len(str(ord(char)))) + str(ord(char)))
ready_code = int("1" + "".join(ready_code))
cipher = pow(ready_code, key, n)
return cipher
def decrypt(self, kd, ciphertext):
key, n = kd
plain_list = list(str(pow(ciphertext, key, n)))[1:]
plain = []
count = 1
temp = ""
for i in plain_list:
if count != 4:
temp += i
count += 1
else:
plain.append(temp)
temp = i
count = 2
plain.append(temp)
plain_list = plain
plain = base64.b64decode(''.join([chr(int(char)) for char in plain_list])).decode("utf-8")
return plain
encryption = rsa()
keys = encryption.get_keys()
d = keys[0]
e = keys[1]
n = keys[2]
print("key: \n" + str(e) + "/" + str(n))
while True:
choose = input("Encrypt (e)/ Decrypt (d) > ")
if choose == "e":
e, n = input("insert key > ").split("/")
to_encrypt = input("message to encrypt > ")
a = encryption.encrypt((int(e), int(n)), to_encrypt)
print(a)
elif choose == "d":
to_decrypt = input("message to decrypt > ")
a = encryption.decrypt((d, n), to_decrypt)
print(a)