Python/computer_vision/intensity_based_segmentation.py

63 lines
1.7 KiB
Python
Raw Normal View History

# Source: "https://www.ijcse.com/docs/IJCSE11-02-03-117.pdf"
# Importing necessary libraries
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
def segment_image(image: np.ndarray, thresholds: list[int]) -> np.ndarray:
"""
Performs image segmentation based on intensity thresholds.
Args:
image: Input grayscale image as a 2D array.
thresholds: Intensity thresholds to define segments.
Returns:
A labeled 2D array where each region corresponds to a threshold range.
Example:
>>> img = np.array([[80, 120, 180], [40, 90, 150], [20, 60, 100]])
>>> segment_image(img, [50, 100, 150])
array([[1, 2, 3],
[0, 1, 2],
[0, 1, 1]], dtype=int32)
"""
# Initialize segmented array with zeros
segmented = np.zeros_like(image, dtype=np.int32)
# Assign labels based on thresholds
for i, threshold in enumerate(thresholds):
segmented[image > threshold] = i + 1
return segmented
if __name__ == "__main__":
# Load the image
image_path = "path_to_image" # Replace with your image path
original_image = Image.open(image_path).convert("L")
image_array = np.array(original_image)
# Define thresholds
thresholds = [50, 100, 150, 200]
# Perform segmentation
segmented_image = segment_image(image_array, thresholds)
# Display the results
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.title("Original Image")
plt.imshow(image_array, cmap="gray")
plt.axis("off")
plt.subplot(1, 2, 2)
plt.title("Segmented Image")
plt.imshow(segmented_image, cmap="tab20")
plt.axis("off")
plt.show()