2018-10-19 07:58:21 +00:00
|
|
|
|
#!/usr/bin/python
|
|
|
|
|
# encoding=utf8
|
|
|
|
|
|
|
|
|
|
""" Author: OMKAR PATHAK """
|
2017-11-25 11:41:55 +00:00
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
2017-10-13 15:15:39 +00:00
|
|
|
|
|
|
|
|
|
class Graph():
|
|
|
|
|
def __init__(self):
|
|
|
|
|
self.vertex = {}
|
|
|
|
|
|
|
|
|
|
# for printing the Graph vertexes
|
|
|
|
|
def printGraph(self):
|
|
|
|
|
print(self.vertex)
|
|
|
|
|
for i in self.vertex.keys():
|
|
|
|
|
print(i,' -> ', ' -> '.join([str(j) for j in self.vertex[i]]))
|
|
|
|
|
|
|
|
|
|
# for adding the edge beween two vertexes
|
|
|
|
|
def addEdge(self, fromVertex, toVertex):
|
|
|
|
|
# check if vertex is already present,
|
|
|
|
|
if fromVertex in self.vertex.keys():
|
|
|
|
|
self.vertex[fromVertex].append(toVertex)
|
|
|
|
|
else:
|
|
|
|
|
# else make a new vertex
|
|
|
|
|
self.vertex[fromVertex] = [toVertex]
|
|
|
|
|
|
|
|
|
|
def DFS(self):
|
|
|
|
|
# visited array for storing already visited nodes
|
|
|
|
|
visited = [False] * len(self.vertex)
|
|
|
|
|
|
|
|
|
|
# call the recursive helper function
|
|
|
|
|
for i in range(len(self.vertex)):
|
|
|
|
|
if visited[i] == False:
|
|
|
|
|
self.DFSRec(i, visited)
|
|
|
|
|
|
|
|
|
|
def DFSRec(self, startVertex, visited):
|
|
|
|
|
# mark start vertex as visited
|
|
|
|
|
visited[startVertex] = True
|
|
|
|
|
|
|
|
|
|
print(startVertex, end = ' ')
|
|
|
|
|
|
|
|
|
|
# Recur for all the vertexes that are adjacent to this node
|
|
|
|
|
for i in self.vertex.keys():
|
|
|
|
|
if visited[i] == False:
|
|
|
|
|
self.DFSRec(i, visited)
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
g = Graph()
|
|
|
|
|
g.addEdge(0, 1)
|
|
|
|
|
g.addEdge(0, 2)
|
|
|
|
|
g.addEdge(1, 2)
|
|
|
|
|
g.addEdge(2, 0)
|
|
|
|
|
g.addEdge(2, 3)
|
|
|
|
|
g.addEdge(3, 3)
|
|
|
|
|
|
|
|
|
|
g.printGraph()
|
|
|
|
|
print('DFS:')
|
|
|
|
|
g.DFS()
|
|
|
|
|
|
|
|
|
|
# OUTPUT:
|
|
|
|
|
# 0 -> 1 -> 2
|
|
|
|
|
# 1 -> 2
|
|
|
|
|
# 2 -> 0 -> 3
|
|
|
|
|
# 3 -> 3
|
|
|
|
|
# DFS:
|
|
|
|
|
# 0 1 2 3
|