Python/arithmetic_analysis/newton_raphson_method.py

34 lines
1.0 KiB
Python
Raw Normal View History

2018-10-19 12:48:28 +00:00
# Implementing Newton Raphson method in Python
# Author: Syed Haseeb Shah (github.com/QuantumNovice)
2019-10-03 19:31:11 +00:00
#The Newton-Raphson method (also known as Newton's method) is a way to
#quickly find a good approximation for the root of a real-valued function
2018-10-19 12:48:28 +00:00
from sympy import diff
from decimal import Decimal
def NewtonRaphson(func, a):
''' Finds root from the point 'a' onwards by Newton-Raphson method '''
while True:
c = Decimal(a) - ( Decimal(eval(func)) / Decimal(eval(str(diff(func)))) )
2018-10-19 12:48:28 +00:00
a = c
# This number dictates the accuracy of the answer
if abs(eval(func)) < 10**-15:
return c
2018-10-19 12:48:28 +00:00
# Let's Execute
if __name__ == '__main__':
# Find root of trigonometric function
# Find value of pi
print('sin(x) = 0', NewtonRaphson('sin(x)', 2))
2018-10-19 12:48:28 +00:00
# Find root of polynomial
print('x**2 - 5*x +2 = 0', NewtonRaphson('x**2 - 5*x +2', 0.4))
2018-10-19 12:48:28 +00:00
# Find Square Root of 5
print('x**2 - 5 = 0', NewtonRaphson('x**2 - 5', 0.1))
2018-10-19 12:48:28 +00:00
# Exponential Roots
print('exp(x) - 1 = 0', NewtonRaphson('exp(x) - 1', 0))