Python/maths/interquartile_range.py

72 lines
1.6 KiB
Python
Raw Normal View History

"""
This is the implementation of inter_quartile range (IQR).
function takes the list of numeric values as input
and return the IQR as output.
Script inspired from its corresponding Wikipedia article
https://en.wikipedia.org/wiki/Interquartile_range
"""
2023-08-06 23:38:17 +05:30
from __future__ import annotations
2023-08-06 23:38:17 +05:30
def find_median(nums: list[int | float]) -> float:
"""
This is the implementation of median.
2023-08-06 23:38:17 +05:30
:param nums: The list of numeric nums
:return: Median of the list
2023-08-06 23:38:17 +05:30
>>> find_median(nums=([1,2,2,3,4]))
2
2023-08-06 23:38:17 +05:30
>>> find_median(nums=([1,2,2,3,4,4]))
2.5
"""
2023-08-06 23:38:17 +05:30
length = len(nums)
if length % 2:
2023-08-06 23:38:17 +05:30
return nums[length // 2]
return float((nums[length // 2] + nums[(length // 2) - 1]) / 2)
2023-08-06 23:38:17 +05:30
def interquartile_range(nums: list[int | float]) -> float:
"""
This is the implementation of inter_quartile
range for a list of numeric.
2023-08-06 23:38:17 +05:30
:param nums: The list of data point
:return: Inter_quartile range
2023-08-06 23:38:17 +05:30
>>> interquartile_range(nums=[4,1,2,3,2])
2.0
2023-08-02 00:23:54 +05:30
2023-08-06 23:38:17 +05:30
>>> interquartile_range(nums=[])
Traceback (most recent call last):
...
ValueError: The list is empty. Provide a non-empty list.
>>> interquartile_range(nums = [-2,-7,-10,9,8,4, -67, 45])
17.0
>>> interquartile_range(nums = [0,0,0,0,0])
0.0
"""
2023-08-06 23:38:17 +05:30
length = len(nums)
if length == 0:
2023-08-02 00:23:54 +05:30
raise ValueError("The list is empty. Provide a non-empty list.")
2023-08-06 23:38:17 +05:30
nums.sort()
div, mod = divmod(length, 2)
2023-08-06 23:38:17 +05:30
q1 = find_median(nums[:div])
half_length = sum((div, mod))
2023-08-06 23:38:17 +05:30
q3 = find_median(nums[half_length:length])
return q3 - q1
if __name__ == "__main__":
import doctest
doctest.testmod()