mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-25 04:30:15 +00:00
78 lines
2.3 KiB
Python
78 lines
2.3 KiB
Python
|
"""
|
|||
|
Project Euler Problem 38: https://projecteuler.net/problem=38
|
|||
|
|
|||
|
Take the number 192 and multiply it by each of 1, 2, and 3:
|
|||
|
|
|||
|
192 × 1 = 192
|
|||
|
192 × 2 = 384
|
|||
|
192 × 3 = 576
|
|||
|
|
|||
|
By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call
|
|||
|
192384576 the concatenated product of 192 and (1,2,3)
|
|||
|
|
|||
|
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5,
|
|||
|
giving the pandigital, 918273645, which is the concatenated product of 9 and
|
|||
|
(1,2,3,4,5).
|
|||
|
|
|||
|
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the
|
|||
|
concatenated product of an integer with (1,2, ... , n) where n > 1?
|
|||
|
|
|||
|
Solution:
|
|||
|
Since n>1, the largest candidate for the solution will be a concactenation of
|
|||
|
a 4-digit number and its double, a 5-digit number.
|
|||
|
Let a be the 4-digit number.
|
|||
|
a has 4 digits => 1000 <= a < 10000
|
|||
|
2a has 5 digits => 10000 <= 2a < 100000
|
|||
|
=> 5000 <= a < 10000
|
|||
|
|
|||
|
The concatenation of a with 2a = a * 10^5 + 2a
|
|||
|
so our candidate for a given a is 100002 * a.
|
|||
|
We iterate through the search space 5000 <= a < 10000 in reverse order,
|
|||
|
calculating the candidates for each a and checking if they are 1-9 pandigital.
|
|||
|
|
|||
|
In case there are no 4-digit numbers that satisfy this property, we check
|
|||
|
the 3-digit numbers with a similar formula (the example a=192 gives a lower
|
|||
|
bound on the length of a):
|
|||
|
a has 3 digits, etc...
|
|||
|
=> 100 <= a < 334, candidate = a * 10^6 + 2a * 10^3 + 3a
|
|||
|
= 1002003 * a
|
|||
|
"""
|
|||
|
|
|||
|
from typing import Union
|
|||
|
|
|||
|
|
|||
|
def is_9_pandigital(n: int) -> bool:
|
|||
|
"""
|
|||
|
Checks whether n is a 9-digit 1 to 9 pandigital number.
|
|||
|
>>> is_9_pandigital(12345)
|
|||
|
False
|
|||
|
>>> is_9_pandigital(156284973)
|
|||
|
True
|
|||
|
>>> is_9_pandigital(1562849733)
|
|||
|
False
|
|||
|
"""
|
|||
|
s = str(n)
|
|||
|
return len(s) == 9 and set(s) == set("123456789")
|
|||
|
|
|||
|
|
|||
|
def solution() -> Union[int, None]:
|
|||
|
"""
|
|||
|
Return the largest 1 to 9 pandigital 9-digital number that can be formed as the
|
|||
|
concatenated product of an integer with (1,2,...,n) where n > 1.
|
|||
|
"""
|
|||
|
for base_num in range(9999, 4999, -1):
|
|||
|
candidate = 100002 * base_num
|
|||
|
if is_9_pandigital(candidate):
|
|||
|
return candidate
|
|||
|
|
|||
|
for base_num in range(333, 99, -1):
|
|||
|
candidate = 1002003 * base_num
|
|||
|
if is_9_pandigital(candidate):
|
|||
|
return candidate
|
|||
|
|
|||
|
return None
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
print(f"{solution() = }")
|