mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-25 04:30:15 +00:00
33 lines
826 B
Python
33 lines
826 B
Python
|
"""
|
|||
|
Problem 120 Square remainders: https://projecteuler.net/problem=120
|
|||
|
|
|||
|
Description:
|
|||
|
|
|||
|
Let r be the remainder when (a−1)^n + (a+1)^n is divided by a^2.
|
|||
|
For example, if a = 7 and n = 3, then r = 42: 6^3 + 8^3 = 728 ≡ 42 mod 49.
|
|||
|
And as n varies, so too will r, but for a = 7 it turns out that r_max = 42.
|
|||
|
For 3 ≤ a ≤ 1000, find ∑ r_max.
|
|||
|
|
|||
|
Solution:
|
|||
|
|
|||
|
On expanding the terms, we get 2 if n is even and 2an if n is odd.
|
|||
|
For maximizing the value, 2an < a*a => n <= (a - 1)/2 (integer division)
|
|||
|
"""
|
|||
|
|
|||
|
|
|||
|
def solution(n: int = 1000) -> int:
|
|||
|
"""
|
|||
|
Returns ∑ r_max for 3 <= a <= n as explained above
|
|||
|
>>> solution(10)
|
|||
|
300
|
|||
|
>>> solution(100)
|
|||
|
330750
|
|||
|
>>> solution(1000)
|
|||
|
333082500
|
|||
|
"""
|
|||
|
return sum(2 * a * ((a - 1) // 2) for a in range(3, n + 1))
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
print(solution())
|