Python/maths/extended_euclidean_algorithm.py

52 lines
1.0 KiB
Python
Raw Normal View History

# @Author: S. Sharma <silentcat>
# @Date: 2019-02-25T12:08:53-06:00
# @Email: silentcat@protonmail.com
# @Last modified by: silentcat
# @Last modified time: 2019-02-26T07:07:38-06:00
import sys
# Finds 2 numbers a and b such that it satisfies
# the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity)
def extended_euclidean_algorithm(m, n):
a = 0; aprime = 1; b = 1; bprime = 0
q = 0; r = 0
if m > n:
c = m; d = n
else:
c = n; d = m
while True:
q = int(c / d)
r = c % d
if r == 0:
break
c = d
d = r
t = aprime
aprime = a
a = t - q*a
t = bprime
bprime = b
b = t - q*b
pair = None
if m > n:
pair = (a,b)
else:
pair = (b,a)
return pair
def main():
if len(sys.argv) < 3:
print('2 integer arguments required')
exit(1)
m = int(sys.argv[1])
n = int(sys.argv[2])
print(extended_euclidean_algorithm(m, n))
if __name__ == '__main__':
main()