2018-10-19 12:48:28 +00:00
|
|
|
'''
|
|
|
|
|
|
|
|
Perceptron
|
|
|
|
w = w + N * (d(k) - y) * x(k)
|
|
|
|
|
|
|
|
Using perceptron network for oil analysis,
|
|
|
|
with Measuring of 3 parameters that represent chemical characteristics we can classify the oil, in p1 or p2
|
|
|
|
p1 = -1
|
|
|
|
p2 = 1
|
|
|
|
|
|
|
|
'''
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import random
|
|
|
|
|
|
|
|
|
|
|
|
class Perceptron:
|
|
|
|
def __init__(self, sample, exit, learn_rate=0.01, epoch_number=1000, bias=-1):
|
|
|
|
self.sample = sample
|
|
|
|
self.exit = exit
|
|
|
|
self.learn_rate = learn_rate
|
|
|
|
self.epoch_number = epoch_number
|
|
|
|
self.bias = bias
|
|
|
|
self.number_sample = len(sample)
|
|
|
|
self.col_sample = len(sample[0])
|
|
|
|
self.weight = []
|
|
|
|
|
|
|
|
def training(self):
|
|
|
|
for sample in self.sample:
|
|
|
|
sample.insert(0, self.bias)
|
|
|
|
|
|
|
|
for i in range(self.col_sample):
|
|
|
|
self.weight.append(random.random())
|
|
|
|
|
|
|
|
self.weight.insert(0, self.bias)
|
|
|
|
|
|
|
|
epoch_count = 0
|
|
|
|
|
|
|
|
while True:
|
|
|
|
erro = False
|
|
|
|
for i in range(self.number_sample):
|
|
|
|
u = 0
|
|
|
|
for j in range(self.col_sample + 1):
|
|
|
|
u = u + self.weight[j] * self.sample[i][j]
|
|
|
|
y = self.sign(u)
|
|
|
|
if y != self.exit[i]:
|
|
|
|
|
|
|
|
for j in range(self.col_sample + 1):
|
|
|
|
|
|
|
|
self.weight[j] = self.weight[j] + self.learn_rate * (self.exit[i] - y) * self.sample[i][j]
|
|
|
|
erro = True
|
|
|
|
#print('Epoch: \n',epoch_count)
|
|
|
|
epoch_count = epoch_count + 1
|
|
|
|
# if you want controle the epoch or just by erro
|
|
|
|
if erro == False:
|
|
|
|
print(('\nEpoch:\n',epoch_count))
|
|
|
|
print('------------------------\n')
|
|
|
|
#if epoch_count > self.epoch_number or not erro:
|
|
|
|
break
|
|
|
|
|
|
|
|
def sort(self, sample):
|
|
|
|
sample.insert(0, self.bias)
|
|
|
|
u = 0
|
|
|
|
for i in range(self.col_sample + 1):
|
|
|
|
u = u + self.weight[i] * sample[i]
|
|
|
|
|
|
|
|
y = self.sign(u)
|
|
|
|
|
|
|
|
if y == -1:
|
|
|
|
print(('Sample: ', sample))
|
|
|
|
print('classification: P1')
|
|
|
|
else:
|
|
|
|
print(('Sample: ', sample))
|
|
|
|
print('classification: P2')
|
|
|
|
|
|
|
|
def sign(self, u):
|
|
|
|
return 1 if u >= 0 else -1
|
|
|
|
|
|
|
|
|
|
|
|
samples = [
|
|
|
|
[-0.6508, 0.1097, 4.0009],
|
|
|
|
[-1.4492, 0.8896, 4.4005],
|
|
|
|
[2.0850, 0.6876, 12.0710],
|
|
|
|
[0.2626, 1.1476, 7.7985],
|
|
|
|
[0.6418, 1.0234, 7.0427],
|
|
|
|
[0.2569, 0.6730, 8.3265],
|
|
|
|
[1.1155, 0.6043, 7.4446],
|
|
|
|
[0.0914, 0.3399, 7.0677],
|
|
|
|
[0.0121, 0.5256, 4.6316],
|
|
|
|
[-0.0429, 0.4660, 5.4323],
|
|
|
|
[0.4340, 0.6870, 8.2287],
|
|
|
|
[0.2735, 1.0287, 7.1934],
|
|
|
|
[0.4839, 0.4851, 7.4850],
|
|
|
|
[0.4089, -0.1267, 5.5019],
|
|
|
|
[1.4391, 0.1614, 8.5843],
|
|
|
|
[-0.9115, -0.1973, 2.1962],
|
|
|
|
[0.3654, 1.0475, 7.4858],
|
|
|
|
[0.2144, 0.7515, 7.1699],
|
|
|
|
[0.2013, 1.0014, 6.5489],
|
|
|
|
[0.6483, 0.2183, 5.8991],
|
|
|
|
[-0.1147, 0.2242, 7.2435],
|
|
|
|
[-0.7970, 0.8795, 3.8762],
|
|
|
|
[-1.0625, 0.6366, 2.4707],
|
|
|
|
[0.5307, 0.1285, 5.6883],
|
|
|
|
[-1.2200, 0.7777, 1.7252],
|
|
|
|
[0.3957, 0.1076, 5.6623],
|
|
|
|
[-0.1013, 0.5989, 7.1812],
|
|
|
|
[2.4482, 0.9455, 11.2095],
|
|
|
|
[2.0149, 0.6192, 10.9263],
|
|
|
|
[0.2012, 0.2611, 5.4631]
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1]
|
|
|
|
|
|
|
|
network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1)
|
|
|
|
|
2018-11-15 00:08:43 +00:00
|
|
|
network.training()
|
2018-10-19 12:48:28 +00:00
|
|
|
|
|
|
|
while True:
|
|
|
|
sample = []
|
|
|
|
for i in range(3):
|
2018-10-20 19:45:08 +00:00
|
|
|
sample.insert(i, float(input('value: ')))
|
2018-10-19 12:48:28 +00:00
|
|
|
network.sort(sample)
|