mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 09:10:16 +00:00
102 lines
3.3 KiB
Python
102 lines
3.3 KiB
Python
|
import numpy as np
|
||
|
|
||
|
|
||
|
def power_iteration(
|
||
|
input_matrix: np.array, vector: np.array, error_tol=1e-12, max_iterations=100
|
||
|
) -> [float, np.array]:
|
||
|
"""
|
||
|
Power Iteration.
|
||
|
Find the largest eignevalue and corresponding eigenvector
|
||
|
of matrix input_matrix given a random vector in the same space.
|
||
|
Will work so long as vector has component of largest eigenvector.
|
||
|
input_matrix must be symmetric.
|
||
|
|
||
|
Input
|
||
|
input_matrix: input matrix whose largest eigenvalue we will find.
|
||
|
Numpy array. np.shape(input_matrix) == (N,N).
|
||
|
vector: random initial vector in same space as matrix.
|
||
|
Numpy array. np.shape(vector) == (N,) or (N,1)
|
||
|
|
||
|
Output
|
||
|
largest_eigenvalue: largest eigenvalue of the matrix input_matrix.
|
||
|
Float. Scalar.
|
||
|
largest_eigenvector: eigenvector corresponding to largest_eigenvalue.
|
||
|
Numpy array. np.shape(largest_eigenvector) == (N,) or (N,1).
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> input_matrix = np.array([
|
||
|
... [41, 4, 20],
|
||
|
... [ 4, 26, 30],
|
||
|
... [20, 30, 50]
|
||
|
... ])
|
||
|
>>> vector = np.array([41,4,20])
|
||
|
>>> power_iteration(input_matrix,vector)
|
||
|
(79.66086378788381, array([0.44472726, 0.46209842, 0.76725662]))
|
||
|
"""
|
||
|
|
||
|
# Ensure matrix is square.
|
||
|
assert np.shape(input_matrix)[0] == np.shape(input_matrix)[1]
|
||
|
# Ensure proper dimensionality.
|
||
|
assert np.shape(input_matrix)[0] == np.shape(vector)[0]
|
||
|
|
||
|
# Set convergence to False. Will define convergence when we exceed max_iterations
|
||
|
# or when we have small changes from one iteration to next.
|
||
|
|
||
|
convergence = False
|
||
|
lamda_previous = 0
|
||
|
iterations = 0
|
||
|
error = 1e12
|
||
|
|
||
|
while not convergence:
|
||
|
# Multiple matrix by the vector.
|
||
|
w = np.dot(input_matrix, vector)
|
||
|
# Normalize the resulting output vector.
|
||
|
vector = w / np.linalg.norm(w)
|
||
|
# Find rayleigh quotient
|
||
|
# (faster than usual b/c we know vector is normalized already)
|
||
|
lamda = np.dot(vector.T, np.dot(input_matrix, vector))
|
||
|
|
||
|
# Check convergence.
|
||
|
error = np.abs(lamda - lamda_previous) / lamda
|
||
|
iterations += 1
|
||
|
|
||
|
if error <= error_tol or iterations >= max_iterations:
|
||
|
convergence = True
|
||
|
|
||
|
lamda_previous = lamda
|
||
|
|
||
|
return lamda, vector
|
||
|
|
||
|
|
||
|
def test_power_iteration() -> None:
|
||
|
"""
|
||
|
>>> test_power_iteration() # self running tests
|
||
|
"""
|
||
|
# Our implementation.
|
||
|
input_matrix = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]])
|
||
|
vector = np.array([41, 4, 20])
|
||
|
eigen_value, eigen_vector = power_iteration(input_matrix, vector)
|
||
|
|
||
|
# Numpy implementation.
|
||
|
|
||
|
# Get eigen values and eigen vectors using built in numpy
|
||
|
# eigh (eigh used for symmetric or hermetian matrices).
|
||
|
eigen_values, eigen_vectors = np.linalg.eigh(input_matrix)
|
||
|
# Last eigen value is the maximum one.
|
||
|
eigen_value_max = eigen_values[-1]
|
||
|
# Last column in this matrix is eigen vector corresponding to largest eigen value.
|
||
|
eigen_vector_max = eigen_vectors[:, -1]
|
||
|
|
||
|
# Check our implementation and numpy gives close answers.
|
||
|
assert np.abs(eigen_value - eigen_value_max) <= 1e-6
|
||
|
# Take absolute values element wise of each eigenvector.
|
||
|
# as they are only unique to a minus sign.
|
||
|
assert np.linalg.norm(np.abs(eigen_vector) - np.abs(eigen_vector_max)) <= 1e-6
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import doctest
|
||
|
|
||
|
doctest.testmod()
|
||
|
test_power_iteration()
|