mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 09:10:16 +00:00
46 lines
1.0 KiB
Python
46 lines
1.0 KiB
Python
|
# This theorem states that the number of prime factors of n
|
||
|
# will be approximately log(log(n)) for most natural numbers n
|
||
|
|
||
|
import math
|
||
|
|
||
|
|
||
|
def exactPrimeFactorCount(n):
|
||
|
"""
|
||
|
>>> exactPrimeFactorCount(51242183)
|
||
|
3
|
||
|
"""
|
||
|
count = 0
|
||
|
if n % 2 == 0:
|
||
|
count += 1
|
||
|
while n % 2 == 0:
|
||
|
n = int(n / 2)
|
||
|
# the n input value must be odd so that
|
||
|
# we can skip one element (ie i += 2)
|
||
|
|
||
|
i = 3
|
||
|
|
||
|
while i <= int(math.sqrt(n)):
|
||
|
if n % i == 0:
|
||
|
count += 1
|
||
|
while n % i == 0:
|
||
|
n = int(n / i)
|
||
|
i = i + 2
|
||
|
|
||
|
# this condition checks the prime
|
||
|
# number n is greater than 2
|
||
|
|
||
|
if n > 2:
|
||
|
count += 1
|
||
|
return count
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
n = 51242183
|
||
|
print(f"The number of distinct prime factors is/are {exactPrimeFactorCount(n)}")
|
||
|
print("The value of log(log(n)) is {0:.4f}".format(math.log(math.log(n))))
|
||
|
|
||
|
"""
|
||
|
The number of distinct prime factors is/are 3
|
||
|
The value of log(log(n)) is 2.8765
|
||
|
"""
|