Python/matrix/tests/test_matrix_operation.py

119 lines
3.9 KiB
Python
Raw Normal View History

"""
Testing here assumes that numpy and linalg is ALWAYS correct!!!!
If running from PyCharm you can place the following line in "Additional Arguments" for
the pytest run configuration
-vv -m mat_ops -p no:cacheprovider
"""
# standard libraries
import sys
import numpy as np
import pytest
import logging
# Custom/local libraries
from matrix import matrix_operation as matop
mat_a = [[12, 10], [3, 9]]
mat_b = [[3, 4], [7, 4]]
mat_c = [[3, 0, 2], [2, 0, -2], [0, 1, 1]]
mat_d = [[3, 0, -2], [2, 0, 2], [0, 1, 1]]
mat_e = [[3, 0, 2], [2, 0, -2], [0, 1, 1], [2, 0, -2]]
mat_f = [1]
mat_h = [2]
logger = logging.getLogger()
logger.level = logging.DEBUG
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
@pytest.mark.mat_ops
2019-10-05 05:14:13 +00:00
@pytest.mark.parametrize(
("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)]
)
def test_addition(mat1, mat2):
if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2):
with pytest.raises(TypeError):
logger.info(f"\n\t{test_addition.__name__} returned integer")
matop.add(mat1, mat2)
elif (np.array(mat1)).shape == (np.array(mat2)).shape:
logger.info(f"\n\t{test_addition.__name__} with same matrix dims")
act = (np.array(mat1) + np.array(mat2)).tolist()
theo = matop.add(mat1, mat2)
assert theo == act
else:
with pytest.raises(ValueError):
logger.info(f"\n\t{test_addition.__name__} with different matrix dims")
matop.add(mat1, mat2)
@pytest.mark.mat_ops
2019-10-05 05:14:13 +00:00
@pytest.mark.parametrize(
("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)]
)
def test_subtraction(mat1, mat2):
if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2):
with pytest.raises(TypeError):
logger.info(f"\n\t{test_subtraction.__name__} returned integer")
matop.subtract(mat1, mat2)
elif (np.array(mat1)).shape == (np.array(mat2)).shape:
logger.info(f"\n\t{test_subtraction.__name__} with same matrix dims")
act = (np.array(mat1) - np.array(mat2)).tolist()
theo = matop.subtract(mat1, mat2)
assert theo == act
else:
with pytest.raises(ValueError):
logger.info(f"\n\t{test_subtraction.__name__} with different matrix dims")
assert matop.subtract(mat1, mat2)
@pytest.mark.mat_ops
2019-10-05 05:14:13 +00:00
@pytest.mark.parametrize(
("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)]
)
def test_multiplication(mat1, mat2):
if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2):
logger.info(f"\n\t{test_multiplication.__name__} returned integer")
with pytest.raises(TypeError):
matop.add(mat1, mat2)
elif (np.array(mat1)).shape == (np.array(mat2)).shape:
logger.info(f"\n\t{test_multiplication.__name__} meets dim requirements")
act = (np.matmul(mat1, mat2)).tolist()
theo = matop.multiply(mat1, mat2)
assert theo == act
else:
with pytest.raises(ValueError):
2019-10-05 05:14:13 +00:00
logger.info(
f"\n\t{test_multiplication.__name__} does not meet dim requirements"
)
assert matop.subtract(mat1, mat2)
@pytest.mark.mat_ops
def test_scalar_multiply():
act = (3.5 * np.array(mat_a)).tolist()
theo = matop.scalar_multiply(mat_a, 3.5)
assert theo == act
@pytest.mark.mat_ops
def test_identity():
act = (np.identity(5)).tolist()
theo = matop.identity(5)
assert theo == act
@pytest.mark.mat_ops
2019-10-05 05:14:13 +00:00
@pytest.mark.parametrize("mat", [mat_a, mat_b, mat_c, mat_d, mat_e, mat_f])
def test_transpose(mat):
if (np.array(mat)).shape < (2, 2):
with pytest.raises(TypeError):
logger.info(f"\n\t{test_transpose.__name__} returned integer")
matop.transpose(mat)
else:
act = (np.transpose(mat)).tolist()
theo = matop.transpose(mat, return_map=False)
assert theo == act