2024-11-13 08:36:58 +00:00
|
|
|
class Node:
|
|
|
|
"""A node in the Fibonacci heap.
|
|
|
|
|
|
|
|
Each node maintains references to its key, degree (number of children),
|
|
|
|
marked status, parent, child, and circular linked list references (left/right).
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
key: The key value stored in the node
|
|
|
|
degree: Number of children of the node
|
|
|
|
marked: Boolean indicating if the node is marked
|
|
|
|
parent: Reference to parent node
|
|
|
|
child: Reference to one child node
|
|
|
|
left: Reference to left sibling in circular list
|
|
|
|
right: Reference to right sibling in circular list
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> node = Node(5)
|
|
|
|
>>> node.key
|
|
|
|
5
|
|
|
|
>>> node.degree
|
|
|
|
0
|
|
|
|
>>> node.marked
|
|
|
|
False
|
|
|
|
>>> node.left == node
|
|
|
|
True
|
|
|
|
>>> node.right == node
|
|
|
|
True
|
|
|
|
"""
|
|
|
|
|
2024-11-17 02:58:59 +00:00
|
|
|
def __init__(self, key) -> None:
|
2024-11-17 03:09:56 +00:00
|
|
|
self.key = key or None
|
2024-11-13 08:36:58 +00:00
|
|
|
self.degree = 0
|
|
|
|
self.marked = False
|
2024-11-17 03:09:56 +00:00
|
|
|
self.parent = Node(None)
|
|
|
|
self.child = Node(None)
|
2024-11-13 08:36:58 +00:00
|
|
|
self.left = self
|
|
|
|
self.right = self
|
|
|
|
|
|
|
|
|
|
|
|
class FibonacciHeap:
|
|
|
|
"""Implementation of a Fibonacci heap using circular linked lists.
|
|
|
|
|
|
|
|
A Fibonacci heap is a collection of trees satisfying the min-heap property.
|
|
|
|
This implementation uses circular linked lists for both the root list and
|
|
|
|
child lists of nodes.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
min_node: Reference to the node with minimum key
|
|
|
|
total_nodes: Total number of nodes in the heap
|
|
|
|
|
|
|
|
Reference: Introduction to Algorithms (CLRS) Chapter 19
|
|
|
|
https://en.wikipedia.org/wiki/Fibonacci_heap
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> heap = FibonacciHeap()
|
|
|
|
>>> heap.is_empty()
|
|
|
|
True
|
|
|
|
>>> node = heap.insert(3)
|
|
|
|
>>> node.key
|
|
|
|
3
|
|
|
|
>>> node2 = heap.insert(2)
|
|
|
|
>>> node2.key
|
|
|
|
2
|
|
|
|
>>> heap.find_min()
|
|
|
|
2
|
|
|
|
>>> heap.extract_min()
|
|
|
|
2
|
|
|
|
>>> heap.find_min()
|
|
|
|
3
|
|
|
|
"""
|
|
|
|
|
2024-11-17 02:58:59 +00:00
|
|
|
def __init__(self) -> None:
|
2024-11-17 03:09:56 +00:00
|
|
|
self.min_node = Node(None)
|
2024-11-13 08:36:58 +00:00
|
|
|
self.total_nodes = 0
|
|
|
|
|
2024-11-17 02:58:59 +00:00
|
|
|
def insert(self, key) -> Node:
|
2024-11-13 08:36:58 +00:00
|
|
|
"""Insert a new key into the heap.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
key: The key value to insert
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Node: The newly created node
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> heap = FibonacciHeap()
|
|
|
|
>>> node = heap.insert(5)
|
|
|
|
>>> node.key
|
|
|
|
5
|
|
|
|
>>> heap.find_min()
|
|
|
|
5
|
|
|
|
>>> node2 = heap.insert(3)
|
|
|
|
>>> node2.key
|
|
|
|
3
|
|
|
|
>>> heap.find_min()
|
|
|
|
3
|
|
|
|
"""
|
|
|
|
new_node = Node(key)
|
|
|
|
if self.min_node is None:
|
|
|
|
self.min_node = new_node
|
|
|
|
else:
|
|
|
|
self._insert_into_circular_list(self.min_node, new_node)
|
|
|
|
if new_node.key < self.min_node.key:
|
|
|
|
self.min_node = new_node
|
|
|
|
self.total_nodes += 1
|
|
|
|
return new_node
|
|
|
|
|
2024-11-17 02:58:59 +00:00
|
|
|
def _insert_into_circular_list(self, base_node, node_to_insert) -> Node:
|
2024-11-13 08:36:58 +00:00
|
|
|
"""Insert node into circular linked list.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
base_node: The reference node in the circular list
|
|
|
|
node_to_insert: The node to insert into the list
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Node: The base node
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> heap = FibonacciHeap()
|
|
|
|
>>> node1 = Node(1)
|
|
|
|
>>> node2 = Node(2)
|
|
|
|
>>> result = heap._insert_into_circular_list(node1, node2)
|
|
|
|
>>> result == node1
|
|
|
|
True
|
|
|
|
>>> node1.right == node2
|
|
|
|
True
|
|
|
|
>>> node2.left == node1
|
|
|
|
True
|
|
|
|
"""
|
2024-11-17 03:09:56 +00:00
|
|
|
if base_node.key is None:
|
2024-11-13 08:36:58 +00:00
|
|
|
return node_to_insert
|
|
|
|
|
|
|
|
node_to_insert.right = base_node.right
|
|
|
|
node_to_insert.left = base_node
|
|
|
|
base_node.right.left = node_to_insert
|
|
|
|
base_node.right = node_to_insert
|
|
|
|
return base_node
|
|
|
|
|
2024-11-17 02:58:59 +00:00
|
|
|
def extract_min(self) -> Node:
|
2024-11-13 08:36:58 +00:00
|
|
|
"""Remove and return the minimum key from the heap.
|
|
|
|
|
|
|
|
This operation removes the node with the minimum key from the heap,
|
|
|
|
adds all its children to the root list, and consolidates the heap
|
|
|
|
to maintain the Fibonacci heap properties. This is one of the more
|
|
|
|
complex operations with amortized time complexity of O(log n).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Node: The minimum key value that was removed,
|
|
|
|
or None if the heap is empty
|
|
|
|
|
|
|
|
Example:
|
|
|
|
>>> heap = FibonacciHeap()
|
|
|
|
>>> node1 = heap.insert(3)
|
|
|
|
>>> node2 = heap.insert(1)
|
|
|
|
>>> node3 = heap.insert(2)
|
|
|
|
>>> heap.extract_min() # Removes and returns 1
|
|
|
|
1
|
|
|
|
>>> heap.extract_min() # Removes and returns 2
|
|
|
|
2
|
|
|
|
>>> heap.extract_min() # Removes and returns 3
|
|
|
|
3
|
|
|
|
>>> heap.extract_min() # Heap is now empty
|
|
|
|
|
|
|
|
Note:
|
|
|
|
This operation may trigger heap consolidation to maintain
|
|
|
|
the Fibonacci heap properties after removal of the minimum node.
|
|
|
|
"""
|
|
|
|
if self.min_node is None:
|
2024-11-17 03:09:56 +00:00
|
|
|
return Node(None)
|
2024-11-13 08:36:58 +00:00
|
|
|
|
|
|
|
min_node = self.min_node
|
|
|
|
|
|
|
|
if min_node.child:
|
|
|
|
current_child = min_node.child
|
|
|
|
last_child = min_node.child.left
|
|
|
|
while True:
|
|
|
|
next_child = current_child.right
|
|
|
|
self._insert_into_circular_list(self.min_node, current_child)
|
2024-11-17 03:09:56 +00:00
|
|
|
current_child.parent.key = None
|
2024-11-13 08:36:58 +00:00
|
|
|
if current_child == last_child:
|
|
|
|
break
|
|
|
|
current_child = next_child
|
|
|
|
|
|
|
|
min_node.left.right = min_node.right
|
|
|
|
min_node.right.left = min_node.left
|
|
|
|
|
|
|
|
if min_node == min_node.right:
|
2024-11-17 03:09:56 +00:00
|
|
|
self.min_node.key = None
|
2024-11-13 08:36:58 +00:00
|
|
|
else:
|
|
|
|
self.min_node = min_node.right
|
|
|
|
self._consolidate()
|
|
|
|
|
|
|
|
self.total_nodes -= 1
|
|
|
|
return min_node.key
|
|
|
|
|
|
|
|
def _consolidate(self):
|
|
|
|
"""Consolidate the heap after removing the minimum node.
|
|
|
|
|
|
|
|
This internal method maintains the Fibonacci heap properties by combining
|
|
|
|
trees of the same degree until no two roots have the same degree. This
|
|
|
|
process is key to maintaining the efficiency of the data structure.
|
|
|
|
|
|
|
|
The consolidation process works by:
|
|
|
|
1. Creating a temporary array indexed by tree degree
|
|
|
|
2. Processing each root node and combining trees of the same degree
|
|
|
|
3. Reconstructing the root list and finding the new minimum
|
|
|
|
|
|
|
|
Time complexity: O(log n) amortized
|
|
|
|
|
|
|
|
Note:
|
|
|
|
This is an internal method called by extract_min and should not be
|
|
|
|
called directly from outside the class.
|
|
|
|
"""
|
|
|
|
max_degree = int(self.total_nodes**0.5) + 1
|
2024-11-17 03:09:56 +00:00
|
|
|
degree_table = [Node(None)] * max_degree
|
2024-11-13 08:36:58 +00:00
|
|
|
|
|
|
|
roots = []
|
|
|
|
if self.min_node:
|
|
|
|
current_root = self.min_node
|
|
|
|
while True:
|
|
|
|
roots.append(current_root)
|
|
|
|
if current_root.right == self.min_node:
|
|
|
|
break
|
|
|
|
current_root = current_root.right
|
|
|
|
|
|
|
|
for current_root in roots:
|
|
|
|
root_node = current_root
|
|
|
|
current_degree = root_node.degree
|
|
|
|
|
|
|
|
while degree_table[current_degree] is not None:
|
|
|
|
other_root = degree_table[current_degree]
|
|
|
|
if root_node.key > other_root.key:
|
|
|
|
root_node, other_root = other_root, root_node
|
|
|
|
|
|
|
|
other_root.left.right = other_root.right
|
|
|
|
other_root.right.left = other_root.left
|
|
|
|
|
2024-11-17 03:09:56 +00:00
|
|
|
if root_node.child.key is None:
|
2024-11-13 08:36:58 +00:00
|
|
|
root_node.child = other_root
|
|
|
|
other_root.right = other_root
|
|
|
|
other_root.left = other_root
|
|
|
|
else:
|
|
|
|
self._insert_into_circular_list(root_node.child, other_root)
|
|
|
|
|
|
|
|
other_root.parent = root_node
|
|
|
|
root_node.degree += 1
|
|
|
|
other_root.marked = False
|
|
|
|
|
2024-11-17 03:09:56 +00:00
|
|
|
degree_table[current_degree] = Node(None)
|
2024-11-13 08:36:58 +00:00
|
|
|
current_degree += 1
|
|
|
|
|
|
|
|
degree_table[current_degree] = root_node
|
|
|
|
|
2024-11-17 03:09:56 +00:00
|
|
|
self.min_node.key = None
|
2024-11-13 08:36:58 +00:00
|
|
|
for degree in range(max_degree):
|
|
|
|
if degree_table[degree] is not None and (
|
2024-11-17 03:09:56 +00:00
|
|
|
self.min_node is None or (degree_table[degree] < self.min_node.key)
|
2024-11-13 08:36:58 +00:00
|
|
|
):
|
|
|
|
self.min_node = degree_table[degree]
|
|
|
|
|
|
|
|
def decrease_key(self, node, new_key):
|
|
|
|
"""Decrease the key value of a given node.
|
|
|
|
|
|
|
|
This operation updates the key of a node to a new, smaller value and
|
|
|
|
maintains the min-heap property by potentially cutting the node from
|
|
|
|
its parent and performing cascading cuts up the tree.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
node: The node whose key should be decreased
|
|
|
|
new_key: The new key value, must be smaller than the current key
|
|
|
|
|
|
|
|
Example:
|
|
|
|
>>> heap = FibonacciHeap()
|
2024-11-17 03:09:56 +00:00
|
|
|
>>> node1 = heap.insert(5)
|
2024-11-13 08:36:58 +00:00
|
|
|
>>> heap.decrease_key(node, 3)
|
|
|
|
>>> node.key
|
|
|
|
3
|
|
|
|
>>> heap.find_min()
|
|
|
|
3
|
|
|
|
>>> heap.decrease_key(node, 1)
|
|
|
|
>>> node.key
|
|
|
|
1
|
|
|
|
>>> heap.find_min()
|
|
|
|
1
|
|
|
|
"""
|
|
|
|
if new_key > node.key:
|
|
|
|
raise ValueError("New key is greater than current key")
|
|
|
|
|
|
|
|
node.key = new_key
|
|
|
|
parent_node = node.parent
|
|
|
|
|
2024-11-17 03:09:56 +00:00
|
|
|
if parent_node.key is not None and node.key < parent_node.key:
|
2024-11-13 08:36:58 +00:00
|
|
|
self._cut(node, parent_node)
|
|
|
|
self._cascading_cut(parent_node)
|
|
|
|
|
|
|
|
if node.key < self.min_node.key:
|
|
|
|
self.min_node = node
|
|
|
|
|
|
|
|
def _cut(self, child_node, parent_node):
|
|
|
|
"""Cut a node from its parent and add it to the root list.
|
|
|
|
|
|
|
|
This is a helper method used in decrease_key operations. When a node's key
|
|
|
|
becomes smaller than its parent's key, it needs to be cut from its parent
|
|
|
|
and added to the root list to maintain the min-heap property.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
child_node: The node to be cut from its parent
|
|
|
|
parent_node: The parent node from which to cut
|
|
|
|
|
|
|
|
Note:
|
|
|
|
This is an internal method that maintains heap properties during
|
|
|
|
decrease_key operations. It should not be called directly from
|
|
|
|
outside the class.
|
|
|
|
"""
|
|
|
|
if child_node.right == child_node:
|
2024-11-17 03:09:56 +00:00
|
|
|
parent_node.child = Node(None)
|
2024-11-13 08:36:58 +00:00
|
|
|
else:
|
|
|
|
parent_node.child = child_node.right
|
|
|
|
child_node.right.left = child_node.left
|
|
|
|
child_node.left.right = child_node.right
|
|
|
|
|
|
|
|
parent_node.degree -= 1
|
|
|
|
|
|
|
|
self._insert_into_circular_list(self.min_node, child_node)
|
2024-11-17 03:09:56 +00:00
|
|
|
child_node.parent = Node(None)
|
2024-11-13 08:36:58 +00:00
|
|
|
child_node.marked = False
|
|
|
|
|
2024-11-17 02:58:59 +00:00
|
|
|
def _cascading_cut(self, current_node) -> None:
|
2024-11-13 08:36:58 +00:00
|
|
|
"""Perform cascading cut operation.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
current_node: The node to start cascading cut from
|
|
|
|
"""
|
|
|
|
if (parent_node := current_node.parent) is not None:
|
|
|
|
if not current_node.marked:
|
|
|
|
current_node.marked = True
|
|
|
|
else:
|
|
|
|
self._cut(current_node, parent_node)
|
|
|
|
self._cascading_cut(parent_node)
|
|
|
|
|
2024-11-17 02:58:59 +00:00
|
|
|
def delete(self, node) -> None:
|
2024-11-13 08:36:58 +00:00
|
|
|
"""Delete a node from the heap.
|
|
|
|
|
|
|
|
This operation removes a given node from the heap by first decreasing
|
|
|
|
its key to negative infinity (making it the minimum) and then extracting
|
|
|
|
the minimum.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
node: The node to be deleted from the heap
|
|
|
|
|
|
|
|
Example:
|
|
|
|
>>> heap = FibonacciHeap()
|
|
|
|
>>> node1 = heap.insert(3)
|
|
|
|
>>> node2 = heap.insert(2)
|
|
|
|
>>> heap.delete(node1)
|
|
|
|
>>> heap.find_min()
|
|
|
|
2
|
|
|
|
>>> heap.total_nodes
|
|
|
|
1
|
|
|
|
|
|
|
|
Note:
|
|
|
|
This operation has an amortized time complexity of O(log n)
|
|
|
|
as it combines decrease_key and extract_min operations.
|
|
|
|
"""
|
|
|
|
self.decrease_key(node, float("-inf"))
|
|
|
|
self.extract_min()
|
|
|
|
|
2024-11-17 03:09:56 +00:00
|
|
|
def find_min(self) -> float:
|
2024-11-13 08:36:58 +00:00
|
|
|
"""Return the minimum key without removing it from the heap.
|
|
|
|
|
|
|
|
This operation provides quick access to the minimum key in the heap
|
|
|
|
without modifying the heap structure.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
float | None: The minimum key value, or None if the heap is empty
|
|
|
|
|
|
|
|
Example:
|
|
|
|
>>> heap = FibonacciHeap()
|
|
|
|
>>> heap.find_min() is None
|
|
|
|
True
|
|
|
|
>>> node1 = heap.insert(3)
|
|
|
|
>>> heap.find_min()
|
|
|
|
3
|
|
|
|
"""
|
2024-11-17 03:09:56 +00:00
|
|
|
return self.min_node.key if self.min_node else Node(None)
|
2024-11-13 08:36:58 +00:00
|
|
|
|
2024-11-17 02:58:59 +00:00
|
|
|
def is_empty(self) -> bool:
|
2024-11-13 08:36:58 +00:00
|
|
|
"""Check if heap is empty.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
bool: True if heap is empty, False otherwise
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> heap = FibonacciHeap()
|
|
|
|
>>> heap.is_empty()
|
|
|
|
True
|
|
|
|
>>> node = heap.insert(1)
|
|
|
|
>>> heap.is_empty()
|
|
|
|
False
|
|
|
|
"""
|
2024-11-17 03:09:56 +00:00
|
|
|
return self.min_node.key is None
|
2024-11-13 08:36:58 +00:00
|
|
|
|
2024-11-17 02:58:59 +00:00
|
|
|
def merge(self, other_heap) -> None:
|
2024-11-13 08:36:58 +00:00
|
|
|
"""Merge another Fibonacci heap into this one.
|
|
|
|
|
|
|
|
This operation combines two Fibonacci heaps by concatenating their
|
|
|
|
root lists and updating the minimum pointer if necessary. The other
|
|
|
|
heap is effectively consumed in this process.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
other_heap: Another FibonacciHeap instance to merge into this one
|
|
|
|
|
|
|
|
Example:
|
|
|
|
>>> heap1 = FibonacciHeap()
|
|
|
|
>>> node1 = heap1.insert(3)
|
|
|
|
>>> heap2 = FibonacciHeap()
|
|
|
|
>>> node2 = heap2.insert(2)
|
|
|
|
>>> heap1.merge(heap2)
|
|
|
|
>>> heap1.find_min()
|
|
|
|
2
|
|
|
|
>>> heap1.total_nodes
|
|
|
|
2
|
|
|
|
"""
|
2024-11-17 03:09:56 +00:00
|
|
|
if other_heap.min_node.key is None:
|
2024-11-13 08:36:58 +00:00
|
|
|
return
|
2024-11-17 03:09:56 +00:00
|
|
|
if self.min_node.key is None:
|
2024-11-13 08:36:58 +00:00
|
|
|
self.min_node = other_heap.min_node
|
|
|
|
else:
|
|
|
|
self.min_node.right.left = other_heap.min_node.left
|
|
|
|
other_heap.min_node.left.right = self.min_node.right
|
|
|
|
self.min_node.right = other_heap.min_node
|
|
|
|
other_heap.min_node.left = self.min_node
|
|
|
|
|
|
|
|
if other_heap.min_node.key < self.min_node.key:
|
|
|
|
self.min_node = other_heap.min_node
|
|
|
|
|
|
|
|
self.total_nodes += other_heap.total_nodes
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
import doctest
|
|
|
|
|
|
|
|
doctest.testmod()
|