mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-05 09:57:01 +00:00
349 lines
12 KiB
Python
349 lines
12 KiB
Python
|
"""
|
||
|
In physics and astronomy, a gravitational N-body simulation is a simulation of a
|
||
|
dynamical system of particles under the influence of gravity. The system
|
||
|
consists of a number of bodies, each of which exerts a gravitational force on all
|
||
|
other bodies. These forces are calculated using Newton's law of universal
|
||
|
gravitation. The Euler method is used at each time-step to calculate the change in
|
||
|
velocity and position brought about by these forces. Softening is used to prevent
|
||
|
numerical divergences when a particle comes too close to another (and the force
|
||
|
goes to infinity).
|
||
|
(Description adapted from https://en.wikipedia.org/wiki/N-body_simulation )
|
||
|
(See also http://www.shodor.org/refdesk/Resources/Algorithms/EulersMethod/ )
|
||
|
"""
|
||
|
|
||
|
|
||
|
from __future__ import annotations
|
||
|
|
||
|
import random
|
||
|
|
||
|
from matplotlib import animation
|
||
|
from matplotlib import pyplot as plt
|
||
|
|
||
|
|
||
|
class Body:
|
||
|
def __init__(
|
||
|
self,
|
||
|
position_x: float,
|
||
|
position_y: float,
|
||
|
velocity_x: float,
|
||
|
velocity_y: float,
|
||
|
mass: float = 1.0,
|
||
|
size: float = 1.0,
|
||
|
color: str = "blue",
|
||
|
) -> None:
|
||
|
"""
|
||
|
The parameters "size" & "color" are not relevant for the simulation itself,
|
||
|
they are only used for plotting.
|
||
|
"""
|
||
|
self.position_x = position_x
|
||
|
self.position_y = position_y
|
||
|
self.velocity_x = velocity_x
|
||
|
self.velocity_y = velocity_y
|
||
|
self.mass = mass
|
||
|
self.size = size
|
||
|
self.color = color
|
||
|
|
||
|
@property
|
||
|
def position(self) -> tuple[float, float]:
|
||
|
return self.position_x, self.position_y
|
||
|
|
||
|
@property
|
||
|
def velocity(self) -> tuple[float, float]:
|
||
|
return self.velocity_x, self.velocity_y
|
||
|
|
||
|
def update_velocity(
|
||
|
self, force_x: float, force_y: float, delta_time: float
|
||
|
) -> None:
|
||
|
"""
|
||
|
Euler algorithm for velocity
|
||
|
|
||
|
>>> body_1 = Body(0.,0.,0.,0.)
|
||
|
>>> body_1.update_velocity(1.,0.,1.)
|
||
|
>>> body_1.velocity
|
||
|
(1.0, 0.0)
|
||
|
|
||
|
>>> body_1.update_velocity(1.,0.,1.)
|
||
|
>>> body_1.velocity
|
||
|
(2.0, 0.0)
|
||
|
|
||
|
>>> body_2 = Body(0.,0.,5.,0.)
|
||
|
>>> body_2.update_velocity(0.,-10.,10.)
|
||
|
>>> body_2.velocity
|
||
|
(5.0, -100.0)
|
||
|
|
||
|
>>> body_2.update_velocity(0.,-10.,10.)
|
||
|
>>> body_2.velocity
|
||
|
(5.0, -200.0)
|
||
|
"""
|
||
|
self.velocity_x += force_x * delta_time
|
||
|
self.velocity_y += force_y * delta_time
|
||
|
|
||
|
def update_position(self, delta_time: float) -> None:
|
||
|
"""
|
||
|
Euler algorithm for position
|
||
|
|
||
|
>>> body_1 = Body(0.,0.,1.,0.)
|
||
|
>>> body_1.update_position(1.)
|
||
|
>>> body_1.position
|
||
|
(1.0, 0.0)
|
||
|
|
||
|
>>> body_1.update_position(1.)
|
||
|
>>> body_1.position
|
||
|
(2.0, 0.0)
|
||
|
|
||
|
>>> body_2 = Body(10.,10.,0.,-2.)
|
||
|
>>> body_2.update_position(1.)
|
||
|
>>> body_2.position
|
||
|
(10.0, 8.0)
|
||
|
|
||
|
>>> body_2.update_position(1.)
|
||
|
>>> body_2.position
|
||
|
(10.0, 6.0)
|
||
|
"""
|
||
|
self.position_x += self.velocity_x * delta_time
|
||
|
self.position_y += self.velocity_y * delta_time
|
||
|
|
||
|
|
||
|
class BodySystem:
|
||
|
"""
|
||
|
This class is used to hold the bodies, the gravitation constant, the time
|
||
|
factor and the softening factor. The time factor is used to control the speed
|
||
|
of the simulation. The softening factor is used for softening, a numerical
|
||
|
trick for N-body simulations to prevent numerical divergences when two bodies
|
||
|
get too close to each other.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
bodies: list[Body],
|
||
|
gravitation_constant: float = 1.0,
|
||
|
time_factor: float = 1.0,
|
||
|
softening_factor: float = 0.0,
|
||
|
) -> None:
|
||
|
self.bodies = bodies
|
||
|
self.gravitation_constant = gravitation_constant
|
||
|
self.time_factor = time_factor
|
||
|
self.softening_factor = softening_factor
|
||
|
|
||
|
def __len__(self) -> int:
|
||
|
return len(self.bodies)
|
||
|
|
||
|
def update_system(self, delta_time: float) -> None:
|
||
|
"""
|
||
|
For each body, loop through all other bodies to calculate the total
|
||
|
force they exert on it. Use that force to update the body's velocity.
|
||
|
|
||
|
>>> body_system_1 = BodySystem([Body(0,0,0,0), Body(10,0,0,0)])
|
||
|
>>> len(body_system_1)
|
||
|
2
|
||
|
>>> body_system_1.update_system(1)
|
||
|
>>> body_system_1.bodies[0].position
|
||
|
(0.01, 0.0)
|
||
|
>>> body_system_1.bodies[0].velocity
|
||
|
(0.01, 0.0)
|
||
|
|
||
|
>>> body_system_2 = BodySystem([Body(-10,0,0,0), Body(10,0,0,0, mass=4)], 1, 10)
|
||
|
>>> body_system_2.update_system(1)
|
||
|
>>> body_system_2.bodies[0].position
|
||
|
(-9.0, 0.0)
|
||
|
>>> body_system_2.bodies[0].velocity
|
||
|
(0.1, 0.0)
|
||
|
"""
|
||
|
for body1 in self.bodies:
|
||
|
force_x = 0.0
|
||
|
force_y = 0.0
|
||
|
for body2 in self.bodies:
|
||
|
if body1 != body2:
|
||
|
dif_x = body2.position_x - body1.position_x
|
||
|
dif_y = body2.position_y - body1.position_y
|
||
|
|
||
|
# Calculation of the distance using Pythagoras's theorem
|
||
|
# Extra factor due to the softening technique
|
||
|
distance = (dif_x ** 2 + dif_y ** 2 + self.softening_factor) ** (
|
||
|
1 / 2
|
||
|
)
|
||
|
|
||
|
# Newton's law of universal gravitation.
|
||
|
force_x += (
|
||
|
self.gravitation_constant * body2.mass * dif_x / distance ** 3
|
||
|
)
|
||
|
force_y += (
|
||
|
self.gravitation_constant * body2.mass * dif_y / distance ** 3
|
||
|
)
|
||
|
|
||
|
# Update the body's velocity once all the force components have been added
|
||
|
body1.update_velocity(force_x, force_y, delta_time * self.time_factor)
|
||
|
|
||
|
# Update the positions only after all the velocities have been updated
|
||
|
for body in self.bodies:
|
||
|
body.update_position(delta_time * self.time_factor)
|
||
|
|
||
|
|
||
|
def update_step(
|
||
|
body_system: BodySystem, delta_time: float, patches: list[plt.Circle]
|
||
|
) -> None:
|
||
|
"""
|
||
|
Updates the body-system and applies the change to the patch-list used for plotting
|
||
|
|
||
|
>>> body_system_1 = BodySystem([Body(0,0,0,0), Body(10,0,0,0)])
|
||
|
>>> patches_1 = [plt.Circle((body.position_x, body.position_y), body.size,
|
||
|
... fc=body.color)for body in body_system_1.bodies] #doctest: +ELLIPSIS
|
||
|
>>> update_step(body_system_1, 1, patches_1)
|
||
|
>>> patches_1[0].center
|
||
|
(0.01, 0.0)
|
||
|
|
||
|
>>> body_system_2 = BodySystem([Body(-10,0,0,0), Body(10,0,0,0, mass=4)], 1, 10)
|
||
|
>>> patches_2 = [plt.Circle((body.position_x, body.position_y), body.size,
|
||
|
... fc=body.color)for body in body_system_2.bodies] #doctest: +ELLIPSIS
|
||
|
>>> update_step(body_system_2, 1, patches_2)
|
||
|
>>> patches_2[0].center
|
||
|
(-9.0, 0.0)
|
||
|
"""
|
||
|
# Update the positions of the bodies
|
||
|
body_system.update_system(delta_time)
|
||
|
|
||
|
# Update the positions of the patches
|
||
|
for patch, body in zip(patches, body_system.bodies):
|
||
|
patch.center = (body.position_x, body.position_y)
|
||
|
|
||
|
|
||
|
def plot(
|
||
|
title: str,
|
||
|
body_system: BodySystem,
|
||
|
x_start: float = -1,
|
||
|
x_end: float = 1,
|
||
|
y_start: float = -1,
|
||
|
y_end: float = 1,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Utility function to plot how the given body-system evolves over time.
|
||
|
No doctest provided since this function does not have a return value.
|
||
|
"""
|
||
|
|
||
|
INTERVAL = 20 # Frame rate of the animation
|
||
|
DELTA_TIME = INTERVAL / 1000 # Time between time steps in seconds
|
||
|
|
||
|
fig = plt.figure()
|
||
|
fig.canvas.set_window_title(title)
|
||
|
ax = plt.axes(
|
||
|
xlim=(x_start, x_end), ylim=(y_start, y_end)
|
||
|
) # Set section to be plotted
|
||
|
plt.gca().set_aspect("equal") # Fix aspect ratio
|
||
|
|
||
|
# Each body is drawn as a patch by the plt-function
|
||
|
patches = [
|
||
|
plt.Circle((body.position_x, body.position_y), body.size, fc=body.color)
|
||
|
for body in body_system.bodies
|
||
|
]
|
||
|
|
||
|
for patch in patches:
|
||
|
ax.add_patch(patch)
|
||
|
|
||
|
# Function called at each step of the animation
|
||
|
def update(frame: int) -> list[plt.Circle]:
|
||
|
update_step(body_system, DELTA_TIME, patches)
|
||
|
return patches
|
||
|
|
||
|
anim = animation.FuncAnimation( # noqa: F841
|
||
|
fig, update, interval=INTERVAL, blit=True
|
||
|
)
|
||
|
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
def example_1() -> BodySystem:
|
||
|
"""
|
||
|
Example 1: figure-8 solution to the 3-body-problem
|
||
|
This example can be seen as a test of the implementation: given the right
|
||
|
initial conditions, the bodies should move in a figure-8.
|
||
|
(initial conditions taken from http://www.artcompsci.org/vol_1/v1_web/node56.html)
|
||
|
>>> body_system = example_1()
|
||
|
>>> len(body_system)
|
||
|
3
|
||
|
"""
|
||
|
|
||
|
position_x = 0.9700436
|
||
|
position_y = -0.24308753
|
||
|
velocity_x = 0.466203685
|
||
|
velocity_y = 0.43236573
|
||
|
|
||
|
bodies1 = [
|
||
|
Body(position_x, position_y, velocity_x, velocity_y, size=0.2, color="red"),
|
||
|
Body(-position_x, -position_y, velocity_x, velocity_y, size=0.2, color="green"),
|
||
|
Body(0, 0, -2 * velocity_x, -2 * velocity_y, size=0.2, color="blue"),
|
||
|
]
|
||
|
return BodySystem(bodies1, time_factor=3)
|
||
|
|
||
|
|
||
|
def example_2() -> BodySystem:
|
||
|
"""
|
||
|
Example 2: Moon's orbit around the earth
|
||
|
This example can be seen as a test of the implementation: given the right
|
||
|
initial conditions, the moon should orbit around the earth as it actually does.
|
||
|
(mass, velocity and distance taken from https://en.wikipedia.org/wiki/Earth
|
||
|
and https://en.wikipedia.org/wiki/Moon)
|
||
|
No doctest provided since this function does not have a return value.
|
||
|
"""
|
||
|
|
||
|
moon_mass = 7.3476e22
|
||
|
earth_mass = 5.972e24
|
||
|
velocity_dif = 1022
|
||
|
earth_moon_distance = 384399000
|
||
|
gravitation_constant = 6.674e-11
|
||
|
|
||
|
# Calculation of the respective velocities so that total impulse is zero,
|
||
|
# i.e. the two bodies together don't move
|
||
|
moon_velocity = earth_mass * velocity_dif / (earth_mass + moon_mass)
|
||
|
earth_velocity = moon_velocity - velocity_dif
|
||
|
|
||
|
moon = Body(-earth_moon_distance, 0, 0, moon_velocity, moon_mass, 10000000, "grey")
|
||
|
earth = Body(0, 0, 0, earth_velocity, earth_mass, 50000000, "blue")
|
||
|
return BodySystem([earth, moon], gravitation_constant, time_factor=1000000)
|
||
|
|
||
|
|
||
|
def example_3() -> BodySystem:
|
||
|
"""
|
||
|
Example 3: Random system with many bodies.
|
||
|
No doctest provided since this function does not have a return value.
|
||
|
"""
|
||
|
|
||
|
bodies = []
|
||
|
for i in range(10):
|
||
|
velocity_x = random.uniform(-0.5, 0.5)
|
||
|
velocity_y = random.uniform(-0.5, 0.5)
|
||
|
|
||
|
# Bodies are created pairwise with opposite velocities so that the
|
||
|
# total impulse remains zero
|
||
|
bodies.append(
|
||
|
Body(
|
||
|
random.uniform(-0.5, 0.5),
|
||
|
random.uniform(-0.5, 0.5),
|
||
|
velocity_x,
|
||
|
velocity_y,
|
||
|
size=0.05,
|
||
|
)
|
||
|
)
|
||
|
bodies.append(
|
||
|
Body(
|
||
|
random.uniform(-0.5, 0.5),
|
||
|
random.uniform(-0.5, 0.5),
|
||
|
-velocity_x,
|
||
|
-velocity_y,
|
||
|
size=0.05,
|
||
|
)
|
||
|
)
|
||
|
return BodySystem(bodies, 0.01, 10, 0.1)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
plot("Figure-8 solution to the 3-body-problem", example_1(), -2, 2, -2, 2)
|
||
|
plot(
|
||
|
"Moon's orbit around the earth",
|
||
|
example_2(),
|
||
|
-430000000,
|
||
|
430000000,
|
||
|
-430000000,
|
||
|
430000000,
|
||
|
)
|
||
|
plot("Random system with many bodies", example_3(), -1.5, 1.5, -1.5, 1.5)
|