Python/machine_learning/loss_functions/hinge_loss.py

65 lines
1.7 KiB
Python
Raw Normal View History

"""
Hinge Loss
Description:
Compute the Hinge loss used for training SVM (Support Vector Machine).
Formula:
loss = max(0, 1 - true * pred)
Reference: https://en.wikipedia.org/wiki/Hinge_loss
Author: Poojan Smart
Email: smrtpoojan@gmail.com
"""
import numpy as np
def hinge_loss(y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""
Calculate the mean hinge loss for y_true and y_pred for binary classification.
Args:
y_true: Array of actual values (ground truth) encoded as -1 and 1.
y_pred: Array of predicted values.
Returns:
The hinge loss between y_true and y_pred.
Examples:
>>> y_true = np.array([-1, 1, 1, -1, 1])
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
>>> hinge_loss(y_true, pred)
1.52
>>> y_true = np.array([-1, 1, 1, -1, 1, 1])
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
>>> hinge_loss(y_true, pred)
Traceback (most recent call last):
...
ValueError: Length of predicted and actual array must be same.
>>> y_true = np.array([-1, 1, 10, -1, 1])
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
>>> hinge_loss(y_true, pred)
Traceback (most recent call last):
...
ValueError: y_true can have values -1 or 1 only.
"""
if len(y_true) != len(y_pred):
raise ValueError("Length of predicted and actual array must be same.")
# Raise value error when y_true (encoded labels) have any other values
# than -1 and 1
if np.any((y_true != -1) & (y_true != 1)):
raise ValueError("y_true can have values -1 or 1 only.")
hinge_losses = np.maximum(0, 1.0 - (y_true * y_pred))
return np.mean(hinge_losses)
if __name__ == "__main__":
import doctest
doctest.testmod()