mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 05:21:09 +00:00
57 lines
1.4 KiB
Python
57 lines
1.4 KiB
Python
|
"""Coin sums
|
|||
|
|
|||
|
In England the currency is made up of pound, £, and pence, p, and there are
|
|||
|
eight coins in general circulation:
|
|||
|
|
|||
|
1p, 2p, 5p, 10p, 20p, 50p, £1 (100p) and £2 (200p).
|
|||
|
It is possible to make £2 in the following way:
|
|||
|
|
|||
|
1×£1 + 1×50p + 2×20p + 1×5p + 1×2p + 3×1p
|
|||
|
How many different ways can £2 be made using any number of coins?
|
|||
|
|
|||
|
Hint:
|
|||
|
> There are 100 pence in a pound (£1 = 100p)
|
|||
|
> There are coins(in pence) are available: 1, 2, 5, 10, 20, 50, 100 and 200.
|
|||
|
> how many different ways you can combine these values to create 200 pence.
|
|||
|
|
|||
|
Example:
|
|||
|
to make 6p there are 5 ways
|
|||
|
1,1,1,1,1,1
|
|||
|
1,1,1,1,2
|
|||
|
1,1,2,2
|
|||
|
2,2,2
|
|||
|
1,5
|
|||
|
to make 5p there are 4 ways
|
|||
|
1,1,1,1,1
|
|||
|
1,1,1,2
|
|||
|
1,2,2
|
|||
|
5
|
|||
|
"""
|
|||
|
|
|||
|
|
|||
|
def solution(pence: int) -> int:
|
|||
|
"""Returns the number of different ways to make X pence using any number of coins.
|
|||
|
The solution is based on dynamic programming paradigm in a bottom-up fashion.
|
|||
|
|
|||
|
>>> solution(500)
|
|||
|
6295434
|
|||
|
>>> solution(200)
|
|||
|
73682
|
|||
|
>>> solution(50)
|
|||
|
451
|
|||
|
>>> solution(10)
|
|||
|
11
|
|||
|
"""
|
|||
|
coins = [1, 2, 5, 10, 20, 50, 100, 200]
|
|||
|
number_of_ways = [0] * (pence + 1)
|
|||
|
number_of_ways[0] = 1 # base case: 1 way to make 0 pence
|
|||
|
|
|||
|
for coin in coins:
|
|||
|
for i in range(coin, pence + 1, 1):
|
|||
|
number_of_ways[i] += number_of_ways[i - coin]
|
|||
|
return number_of_ways[pence]
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
assert solution(200) == 73682
|