2016-10-12 14:48:37 +00:00
|
|
|
"""
|
|
|
|
Author : Turfa Auliarachman
|
|
|
|
Date : October 12, 2016
|
|
|
|
|
|
|
|
This is a pure Python implementation of Dynamic Programming solution to the edit distance problem.
|
|
|
|
|
|
|
|
The problem is :
|
|
|
|
Given two strings A and B. Find the minimum number of operations to string B such that A = B. The permitted operations are removal, insertion, and substitution.
|
|
|
|
"""
|
2017-11-25 11:41:55 +00:00
|
|
|
|
2016-10-12 14:48:37 +00:00
|
|
|
|
|
|
|
class EditDistance:
|
|
|
|
"""
|
|
|
|
Use :
|
|
|
|
solver = EditDistance()
|
|
|
|
editDistanceResult = solver.solve(firstString, secondString)
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
self.__prepare__()
|
|
|
|
|
|
|
|
def __prepare__(self, N = 0, M = 0):
|
|
|
|
self.dp = [[-1 for y in range(0,M)] for x in range(0,N)]
|
|
|
|
|
|
|
|
def __solveDP(self, x, y):
|
|
|
|
if (x==-1):
|
|
|
|
return y+1
|
|
|
|
elif (y==-1):
|
|
|
|
return x+1
|
|
|
|
elif (self.dp[x][y]>-1):
|
|
|
|
return self.dp[x][y]
|
|
|
|
else:
|
|
|
|
if (self.A[x]==self.B[y]):
|
|
|
|
self.dp[x][y] = self.__solveDP(x-1,y-1)
|
|
|
|
else:
|
|
|
|
self.dp[x][y] = 1+min(self.__solveDP(x,y-1), self.__solveDP(x-1,y), self.__solveDP(x-1,y-1))
|
|
|
|
|
|
|
|
return self.dp[x][y]
|
|
|
|
|
|
|
|
def solve(self, A, B):
|
|
|
|
if isinstance(A,bytes):
|
|
|
|
A = A.decode('ascii')
|
|
|
|
|
|
|
|
if isinstance(B,bytes):
|
|
|
|
B = B.decode('ascii')
|
|
|
|
|
|
|
|
self.A = str(A)
|
|
|
|
self.B = str(B)
|
|
|
|
|
|
|
|
self.__prepare__(len(A), len(B))
|
|
|
|
|
|
|
|
return self.__solveDP(len(A)-1, len(B)-1)
|
|
|
|
|
2019-07-13 07:10:02 +00:00
|
|
|
|
|
|
|
def min_distance_bottom_up(word1: str, word2: str) -> int:
|
|
|
|
"""
|
|
|
|
>>> min_distance_bottom_up("intention", "execution")
|
|
|
|
5
|
|
|
|
>>> min_distance_bottom_up("intention", "")
|
|
|
|
9
|
|
|
|
>>> min_distance_bottom_up("", "")
|
|
|
|
0
|
|
|
|
"""
|
|
|
|
m = len(word1)
|
|
|
|
n = len(word2)
|
|
|
|
dp = [[0 for _ in range(n+1) ] for _ in range(m+1)]
|
|
|
|
for i in range(m+1):
|
|
|
|
for j in range(n+1):
|
2019-08-19 13:37:49 +00:00
|
|
|
|
2019-07-13 07:10:02 +00:00
|
|
|
if i == 0: #first string is empty
|
|
|
|
dp[i][j] = j
|
2019-08-19 13:37:49 +00:00
|
|
|
elif j == 0: #second string is empty
|
|
|
|
dp[i][j] = i
|
2019-07-13 07:10:02 +00:00
|
|
|
elif word1[i-1] == word2[j-1]: #last character of both substing is equal
|
|
|
|
dp[i][j] = dp[i-1][j-1]
|
2019-08-19 13:37:49 +00:00
|
|
|
else:
|
2019-07-13 07:10:02 +00:00
|
|
|
insert = dp[i][j-1]
|
|
|
|
delete = dp[i-1][j]
|
|
|
|
replace = dp[i-1][j-1]
|
|
|
|
dp[i][j] = 1 + min(insert, delete, replace)
|
|
|
|
return dp[m][n]
|
|
|
|
|
2016-10-12 14:48:37 +00:00
|
|
|
if __name__ == '__main__':
|
|
|
|
solver = EditDistance()
|
|
|
|
|
|
|
|
print("****************** Testing Edit Distance DP Algorithm ******************")
|
|
|
|
print()
|
|
|
|
|
2019-08-19 13:37:49 +00:00
|
|
|
S1 = input("Enter the first string: ").strip()
|
|
|
|
S2 = input("Enter the second string: ").strip()
|
2016-10-12 14:48:37 +00:00
|
|
|
|
|
|
|
print()
|
|
|
|
print("The minimum Edit Distance is: %d" % (solver.solve(S1, S2)))
|
2019-07-13 07:10:02 +00:00
|
|
|
print("The minimum Edit Distance is: %d" % (min_distance_bottom_up(S1, S2)))
|
2016-10-12 14:48:37 +00:00
|
|
|
print()
|
|
|
|
print("*************** End of Testing Edit Distance DP Algorithm ***************")
|
2019-07-13 07:10:02 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
2019-08-19 13:37:49 +00:00
|
|
|
|