2019-02-11 16:15:49 +00:00
|
|
|
'''
|
|
|
|
Author: P Shreyas Shetty
|
|
|
|
Implementation of Newton-Raphson method for solving equations of kind
|
|
|
|
f(x) = 0. It is an iterative method where solution is found by the expression
|
|
|
|
x[n+1] = x[n] + f(x[n])/f'(x[n])
|
|
|
|
If no solution exists, then either the solution will not be found when iteration
|
|
|
|
limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
|
|
|
|
is raised. If iteration limit is reached, try increasing maxiter.
|
|
|
|
'''
|
|
|
|
|
|
|
|
import math as m
|
|
|
|
|
|
|
|
def calc_derivative(f, a, h=0.001):
|
|
|
|
'''
|
|
|
|
Calculates derivative at point a for function f using finite difference
|
|
|
|
method
|
|
|
|
'''
|
|
|
|
return (f(a+h)-f(a-h))/(2*h)
|
|
|
|
|
|
|
|
def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6,logsteps=False):
|
|
|
|
|
|
|
|
a = x0 #set the initial guess
|
|
|
|
steps = [a]
|
|
|
|
error = abs(f(a))
|
|
|
|
f1 = lambda x:calc_derivative(f, x, h=step) #Derivative of f(x)
|
|
|
|
for _ in range(maxiter):
|
|
|
|
if f1(a) == 0:
|
|
|
|
raise ValueError("No converging solution found")
|
|
|
|
a = a - f(a)/f1(a) #Calculate the next estimate
|
|
|
|
if logsteps:
|
|
|
|
steps.append(a)
|
|
|
|
if error < maxerror:
|
|
|
|
break
|
|
|
|
else:
|
2019-06-10 06:46:36 +00:00
|
|
|
raise ValueError("Iteration limit reached, no converging solution found")
|
2019-02-11 16:15:49 +00:00
|
|
|
if logsteps:
|
|
|
|
#If logstep is true, then log intermediate steps
|
|
|
|
return a, error, steps
|
|
|
|
return a, error
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
f = lambda x:m.tanh(x)**2-m.exp(3*x)
|
|
|
|
solution, error, steps = newton_raphson(f, x0=10, maxiter=1000, step=1e-6, logsteps=True)
|
|
|
|
plt.plot([abs(f(x)) for x in steps])
|
|
|
|
plt.xlabel("step")
|
|
|
|
plt.ylabel("error")
|
|
|
|
plt.show()
|
2019-06-10 06:46:36 +00:00
|
|
|
print("solution = {%f}, error = {%f}" % (solution, error))
|