mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 23:11:09 +00:00
129 lines
4.2 KiB
Python
129 lines
4.2 KiB
Python
|
import glob
|
||
|
import os
|
||
|
import random
|
||
|
from string import ascii_lowercase, digits
|
||
|
|
||
|
import cv2
|
||
|
|
||
|
"""
|
||
|
Flip image and bounding box for computer vision task
|
||
|
https://paperswithcode.com/method/randomhorizontalflip
|
||
|
"""
|
||
|
|
||
|
# Params
|
||
|
LABEL_DIR = ""
|
||
|
IMAGE_DIR = ""
|
||
|
OUTPUT_DIR = ""
|
||
|
FLIP_TYPE = 1 # (0 is vertical, 1 is horizontal)
|
||
|
|
||
|
|
||
|
def main() -> None:
|
||
|
"""
|
||
|
Get images list and annotations list from input dir.
|
||
|
Update new images and annotations.
|
||
|
Save images and annotations in output dir.
|
||
|
"""
|
||
|
img_paths, annos = get_dataset(LABEL_DIR, IMAGE_DIR)
|
||
|
print("Processing...")
|
||
|
new_images, new_annos, paths = update_image_and_anno(img_paths, annos, FLIP_TYPE)
|
||
|
|
||
|
for index, image in enumerate(new_images):
|
||
|
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
|
||
|
letter_code = random_chars(32)
|
||
|
file_name = paths[index].split(os.sep)[-1].rsplit(".", 1)[0]
|
||
|
file_root = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
|
||
|
cv2.imwrite(f"/{file_root}.jpg", image, [cv2.IMWRITE_JPEG_QUALITY, 85])
|
||
|
print(f"Success {index+1}/{len(new_images)} with {file_name}")
|
||
|
annos_list = []
|
||
|
for anno in new_annos[index]:
|
||
|
obj = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
|
||
|
annos_list.append(obj)
|
||
|
with open(f"/{file_root}.txt", "w") as outfile:
|
||
|
outfile.write("\n".join(line for line in annos_list))
|
||
|
|
||
|
|
||
|
def get_dataset(label_dir: str, img_dir: str) -> tuple[list, list]:
|
||
|
"""
|
||
|
- label_dir <type: str>: Path to label include annotation of images
|
||
|
- img_dir <type: str>: Path to folder contain images
|
||
|
Return <type: list>: List of images path and labels
|
||
|
"""
|
||
|
img_paths = []
|
||
|
labels = []
|
||
|
for label_file in glob.glob(os.path.join(label_dir, "*.txt")):
|
||
|
label_name = label_file.split(os.sep)[-1].rsplit(".", 1)[0]
|
||
|
with open(label_file) as in_file:
|
||
|
obj_lists = in_file.readlines()
|
||
|
img_path = os.path.join(img_dir, f"{label_name}.jpg")
|
||
|
|
||
|
boxes = []
|
||
|
for obj_list in obj_lists:
|
||
|
obj = obj_list.rstrip("\n").split(" ")
|
||
|
boxes.append(
|
||
|
[
|
||
|
int(obj[0]),
|
||
|
float(obj[1]),
|
||
|
float(obj[2]),
|
||
|
float(obj[3]),
|
||
|
float(obj[4]),
|
||
|
]
|
||
|
)
|
||
|
if not boxes:
|
||
|
continue
|
||
|
img_paths.append(img_path)
|
||
|
labels.append(boxes)
|
||
|
return img_paths, labels
|
||
|
|
||
|
|
||
|
def update_image_and_anno(
|
||
|
img_list: list, anno_list: list, flip_type: int = 1
|
||
|
) -> tuple[list, list, list]:
|
||
|
"""
|
||
|
- img_list <type: list>: list of all images
|
||
|
- anno_list <type: list>: list of all annotations of specific image
|
||
|
- flip_type <type: int>: 0 is vertical, 1 is horizontal
|
||
|
Return:
|
||
|
- new_imgs_list <type: narray>: image after resize
|
||
|
- new_annos_lists <type: list>: list of new annotation after scale
|
||
|
- path_list <type: list>: list the name of image file
|
||
|
"""
|
||
|
new_annos_lists = []
|
||
|
path_list = []
|
||
|
new_imgs_list = []
|
||
|
for idx in range(len(img_list)):
|
||
|
new_annos = []
|
||
|
path = img_list[idx]
|
||
|
path_list.append(path)
|
||
|
img_annos = anno_list[idx]
|
||
|
img = cv2.imread(path)
|
||
|
if flip_type == 1:
|
||
|
new_img = cv2.flip(img, flip_type)
|
||
|
for bbox in img_annos:
|
||
|
x_center_new = 1 - bbox[1]
|
||
|
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]])
|
||
|
elif flip_type == 0:
|
||
|
new_img = cv2.flip(img, flip_type)
|
||
|
for bbox in img_annos:
|
||
|
y_center_new = 1 - bbox[2]
|
||
|
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]])
|
||
|
new_annos_lists.append(new_annos)
|
||
|
new_imgs_list.append(new_img)
|
||
|
return new_imgs_list, new_annos_lists, path_list
|
||
|
|
||
|
|
||
|
def random_chars(number_char: int = 32) -> str:
|
||
|
"""
|
||
|
Automatic generate random 32 characters.
|
||
|
Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
|
||
|
>>> len(random_chars(32))
|
||
|
32
|
||
|
"""
|
||
|
assert number_char > 1, "The number of character should greater than 1"
|
||
|
letter_code = ascii_lowercase + digits
|
||
|
return "".join(random.choice(letter_code) for _ in range(number_char))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|
||
|
print("DONE ✅")
|