mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 13:31:07 +00:00
183 lines
6.2 KiB
Python
183 lines
6.2 KiB
Python
|
class FlowNetwork:
|
||
|
def __init__(self, graph, sources, sinks):
|
||
|
self.sourceIndex = None
|
||
|
self.sinkIndex = None
|
||
|
self.graph = graph
|
||
|
|
||
|
self._normalizeGraph(sources, sinks)
|
||
|
self.verticesCount = len(graph)
|
||
|
self.maximumFlowAlgorithm = None
|
||
|
|
||
|
# make only one source and one sink
|
||
|
def _normalizeGraph(self, sources, sinks):
|
||
|
if sources is int:
|
||
|
sources = [sources]
|
||
|
if sinks is int:
|
||
|
sinks = [sinks]
|
||
|
|
||
|
if len(sources) == 0 or len(sinks) == 0:
|
||
|
return
|
||
|
|
||
|
self.sourceIndex = sources[0]
|
||
|
self.sinkIndex = sinks[0]
|
||
|
|
||
|
# make fake vertex if there are more
|
||
|
# than one source or sink
|
||
|
if len(sources) > 1 or len(sinks) > 1:
|
||
|
maxInputFlow = 0
|
||
|
for i in sources:
|
||
|
maxInputFlow += sum(self.graph[i])
|
||
|
|
||
|
|
||
|
size = len(self.graph) + 1
|
||
|
for room in self.graph:
|
||
|
room.insert(0, 0)
|
||
|
self.graph.insert(0, [0] * size)
|
||
|
for i in sources:
|
||
|
self.graph[0][i + 1] = maxInputFlow
|
||
|
self.sourceIndex = 0
|
||
|
|
||
|
size = len(self.graph) + 1
|
||
|
for room in self.graph:
|
||
|
room.append(0)
|
||
|
self.graph.append([0] * size)
|
||
|
for i in sinks:
|
||
|
self.graph[i + 1][size - 1] = maxInputFlow
|
||
|
self.sinkIndex = size - 1
|
||
|
|
||
|
|
||
|
def findMaximumFlow(self):
|
||
|
if self.maximumFlowAlgorithm is None:
|
||
|
raise Exception("You need to set maximum flow algorithm before.")
|
||
|
if self.sourceIndex is None or self.sinkIndex is None:
|
||
|
return 0
|
||
|
|
||
|
self.maximumFlowAlgorithm.execute()
|
||
|
return self.maximumFlowAlgorithm.getMaximumFlow()
|
||
|
|
||
|
def setMaximumFlowAlgorithm(self, Algorithm):
|
||
|
self.maximumFlowAlgorithm = Algorithm(self)
|
||
|
|
||
|
|
||
|
class FlowNetworkAlgorithmExecutor(object):
|
||
|
def __init__(self, flowNetwork):
|
||
|
self.flowNetwork = flowNetwork
|
||
|
self.verticesCount = flowNetwork.verticesCount
|
||
|
self.sourceIndex = flowNetwork.sourceIndex
|
||
|
self.sinkIndex = flowNetwork.sinkIndex
|
||
|
# it's just a reference, so you shouldn't change
|
||
|
# it in your algorithms, use deep copy before doing that
|
||
|
self.graph = flowNetwork.graph
|
||
|
self.executed = False
|
||
|
|
||
|
def execute(self):
|
||
|
if not self.executed:
|
||
|
self._algorithm()
|
||
|
self.executed = True
|
||
|
|
||
|
# You should override it
|
||
|
def _algorithm(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
|
||
|
class MaximumFlowAlgorithmExecutor(FlowNetworkAlgorithmExecutor):
|
||
|
def __init__(self, flowNetwork):
|
||
|
super(MaximumFlowAlgorithmExecutor, self).__init__(flowNetwork)
|
||
|
# use this to save your result
|
||
|
self.maximumFlow = -1
|
||
|
|
||
|
def getMaximumFlow(self):
|
||
|
if not self.executed:
|
||
|
raise Exception("You should execute algorithm before using its result!")
|
||
|
|
||
|
return self.maximumFlow
|
||
|
|
||
|
class PushRelabelExecutor(MaximumFlowAlgorithmExecutor):
|
||
|
def __init__(self, flowNetwork):
|
||
|
super(PushRelabelExecutor, self).__init__(flowNetwork)
|
||
|
|
||
|
self.preflow = [[0] * self.verticesCount for i in range(self.verticesCount)]
|
||
|
|
||
|
self.heights = [0] * self.verticesCount
|
||
|
self.excesses = [0] * self.verticesCount
|
||
|
|
||
|
def _algorithm(self):
|
||
|
self.heights[self.sourceIndex] = self.verticesCount
|
||
|
|
||
|
# push some substance to graph
|
||
|
for nextVertexIndex, bandwidth in enumerate(self.graph[self.sourceIndex]):
|
||
|
self.preflow[self.sourceIndex][nextVertexIndex] += bandwidth
|
||
|
self.preflow[nextVertexIndex][self.sourceIndex] -= bandwidth
|
||
|
self.excesses[nextVertexIndex] += bandwidth
|
||
|
|
||
|
# Relabel-to-front selection rule
|
||
|
verticesList = [i for i in range(self.verticesCount)
|
||
|
if i != self.sourceIndex and i != self.sinkIndex]
|
||
|
|
||
|
# move through list
|
||
|
i = 0
|
||
|
while i < len(verticesList):
|
||
|
vertexIndex = verticesList[i]
|
||
|
previousHeight = self.heights[vertexIndex]
|
||
|
self.processVertex(vertexIndex)
|
||
|
if self.heights[vertexIndex] > previousHeight:
|
||
|
# if it was relabeled, swap elements
|
||
|
# and start from 0 index
|
||
|
verticesList.insert(0, verticesList.pop(i))
|
||
|
i = 0
|
||
|
else:
|
||
|
i += 1
|
||
|
|
||
|
self.maximumFlow = sum(self.preflow[self.sourceIndex])
|
||
|
|
||
|
def processVertex(self, vertexIndex):
|
||
|
while self.excesses[vertexIndex] > 0:
|
||
|
for neighbourIndex in range(self.verticesCount):
|
||
|
# if it's neighbour and current vertex is higher
|
||
|
if self.graph[vertexIndex][neighbourIndex] - self.preflow[vertexIndex][neighbourIndex] > 0\
|
||
|
and self.heights[vertexIndex] > self.heights[neighbourIndex]:
|
||
|
self.push(vertexIndex, neighbourIndex)
|
||
|
|
||
|
self.relabel(vertexIndex)
|
||
|
|
||
|
def push(self, fromIndex, toIndex):
|
||
|
preflowDelta = min(self.excesses[fromIndex],
|
||
|
self.graph[fromIndex][toIndex] - self.preflow[fromIndex][toIndex])
|
||
|
self.preflow[fromIndex][toIndex] += preflowDelta
|
||
|
self.preflow[toIndex][fromIndex] -= preflowDelta
|
||
|
self.excesses[fromIndex] -= preflowDelta
|
||
|
self.excesses[toIndex] += preflowDelta
|
||
|
|
||
|
def relabel(self, vertexIndex):
|
||
|
minHeight = None
|
||
|
for toIndex in range(self.verticesCount):
|
||
|
if self.graph[vertexIndex][toIndex] - self.preflow[vertexIndex][toIndex] > 0:
|
||
|
if minHeight is None or self.heights[toIndex] < minHeight:
|
||
|
minHeight = self.heights[toIndex]
|
||
|
|
||
|
if minHeight is not None:
|
||
|
self.heights[vertexIndex] = minHeight + 1
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
entrances = [0]
|
||
|
exits = [3]
|
||
|
# graph = [
|
||
|
# [0, 0, 4, 6, 0, 0],
|
||
|
# [0, 0, 5, 2, 0, 0],
|
||
|
# [0, 0, 0, 0, 4, 4],
|
||
|
# [0, 0, 0, 0, 6, 6],
|
||
|
# [0, 0, 0, 0, 0, 0],
|
||
|
# [0, 0, 0, 0, 0, 0],
|
||
|
# ]
|
||
|
graph = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
|
||
|
|
||
|
# prepare our network
|
||
|
flowNetwork = FlowNetwork(graph, entrances, exits)
|
||
|
# set algorithm
|
||
|
flowNetwork.setMaximumFlowAlgorithm(PushRelabelExecutor)
|
||
|
# and calculate
|
||
|
maximumFlow = flowNetwork.findMaximumFlow()
|
||
|
|
||
|
print("maximum flow is {}".format(maximumFlow))
|