Python/other/lru_cache.py

193 lines
4.9 KiB
Python
Raw Normal View History

from typing import Callable, Optional
class DoubleLinkedListNode:
'''
Double Linked List Node built specifically for LRU Cache
'''
def __init__(self, key: int, val: int):
self.key = key
self.val = val
self.next = None
self.prev = None
class DoubleLinkedList:
'''
Double Linked List built specifically for LRU Cache
'''
def __init__(self):
self.head = DoubleLinkedListNode(None, None)
self.rear = DoubleLinkedListNode(None, None)
self.head.next, self.rear.prev = self.rear, self.head
def add(self, node: DoubleLinkedListNode) -> None:
'''
Adds the given node to the end of the list (before rear)
'''
temp = self.rear.prev
temp.next, node.prev = node, temp
self.rear.prev, node.next = node, self.rear
def remove(self, node: DoubleLinkedListNode) -> DoubleLinkedListNode:
'''
Removes and returns the given node from the list
'''
temp_last, temp_next = node.prev, node.next
node.prev, node.next = None, None
temp_last.next, temp_next.prev = temp_next, temp_last
return node
class LRUCache:
'''
LRU Cache to store a given capacity of data. Can be used as a stand-alone object
or as a function decorator.
>>> cache = LRUCache(2)
>>> cache.set(1, 1)
>>> cache.set(2, 2)
>>> cache.get(1)
1
>>> cache.set(3, 3)
>>> cache.get(2) # None returned
>>> cache.set(4, 4)
>>> cache.get(1) # None returned
>>> cache.get(3)
3
>>> cache.get(4)
4
>>> cache
CacheInfo(hits=3, misses=2, capacity=2, current size=2)
>>> @LRUCache.decorator(100)
... def fib(num):
... if num in (1, 2):
... return 1
... return fib(num - 1) + fib(num - 2)
>>> for i in range(1, 100):
... res = fib(i)
>>> fib.cache_info()
CacheInfo(hits=194, misses=99, capacity=100, current size=99)
'''
# class variable to map the decorator functions to their respective instance
decorator_function_to_instance_map = {}
def __init__(self, capacity: int):
self.list = DoubleLinkedList()
self.capacity = capacity
self.num_keys = 0
self.hits = 0
self.miss = 0
self.cache = {}
def __repr__(self) -> str:
'''
Return the details for the cache instance
[hits, misses, capacity, current_size]
'''
return (f'CacheInfo(hits={self.hits}, misses={self.miss}, '
f'capacity={self.capacity}, current size={self.num_keys})')
def __contains__(self, key: int) -> bool:
'''
>>> cache = LRUCache(1)
>>> 1 in cache
False
>>> cache.set(1, 1)
>>> 1 in cache
True
'''
return key in self.cache
def get(self, key: int) -> Optional[int]:
'''
Returns the value for the input key and updates the Double Linked List. Returns
None if key is not present in cache
'''
if key in self.cache:
self.hits += 1
self.list.add(self.list.remove(self.cache[key]))
return self.cache[key].val
self.miss += 1
return None
def set(self, key: int, value: int) -> None:
'''
Sets the value for the input key and updates the Double Linked List
'''
if key not in self.cache:
if self.num_keys >= self.capacity:
key_to_delete = self.list.head.next.key
self.list.remove(self.cache[key_to_delete])
del self.cache[key_to_delete]
self.num_keys -= 1
self.cache[key] = DoubleLinkedListNode(key, value)
self.list.add(self.cache[key])
self.num_keys += 1
else:
node = self.list.remove(self.cache[key])
node.val = value
self.list.add(node)
@staticmethod
def decorator(size: int = 128):
'''
Decorator version of LRU Cache
'''
def cache_decorator_inner(func: Callable):
def cache_decorator_wrapper(*args, **kwargs):
if func not in LRUCache.decorator_function_to_instance_map:
LRUCache.decorator_function_to_instance_map[func] = LRUCache(size)
result = LRUCache.decorator_function_to_instance_map[func].get(args[0])
if result is None:
result = func(*args, **kwargs)
LRUCache.decorator_function_to_instance_map[func].set(
args[0], result
)
return result
def cache_info():
return LRUCache.decorator_function_to_instance_map[func]
cache_decorator_wrapper.cache_info = cache_info
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()