mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-28 15:31:08 +00:00
102 lines
3.2 KiB
Python
102 lines
3.2 KiB
Python
|
import numpy as np
|
||
|
|
||
|
matrix = np.array(
|
||
|
[
|
||
|
[5.0, -5.0, -3.0, 4.0, -11.0],
|
||
|
[1.0, -4.0, 6.0, -4.0, -10.0],
|
||
|
[-2.0, -5.0, 4.0, -5.0, -12.0],
|
||
|
[-3.0, -3.0, 5.0, -5.0, 8.0],
|
||
|
],
|
||
|
dtype=float,
|
||
|
)
|
||
|
|
||
|
|
||
|
def solve_linear_system(matrix: np.ndarray) -> np.ndarray:
|
||
|
"""
|
||
|
Solve a linear system of equations using Gaussian elimination with partial pivoting
|
||
|
|
||
|
Args:
|
||
|
- matrix: Coefficient matrix with the last column representing the constants.
|
||
|
|
||
|
Returns:
|
||
|
- Solution vector.
|
||
|
|
||
|
Raises:
|
||
|
- ValueError: If the matrix is not correct (i.e., singular).
|
||
|
|
||
|
https://courses.engr.illinois.edu/cs357/su2013/lect.htm Lecture 7
|
||
|
|
||
|
Example:
|
||
|
>>> A = np.array([[2, 1, -1], [-3, -1, 2], [-2, 1, 2]], dtype=float)
|
||
|
>>> B = np.array([8, -11, -3], dtype=float)
|
||
|
>>> solution = solve_linear_system(np.column_stack((A, B)))
|
||
|
>>> np.allclose(solution, np.array([2., 3., -1.]))
|
||
|
True
|
||
|
>>> solve_linear_system(np.array([[0, 0], [0, 0]], dtype=float))
|
||
|
array([nan, nan])
|
||
|
"""
|
||
|
ab = np.copy(matrix)
|
||
|
num_of_rows = ab.shape[0]
|
||
|
num_of_columns = ab.shape[1] - 1
|
||
|
x_lst: list[float] = []
|
||
|
|
||
|
# Lead element search
|
||
|
for column_num in range(num_of_rows):
|
||
|
for i in range(column_num, num_of_columns):
|
||
|
if abs(ab[i][column_num]) > abs(ab[column_num][column_num]):
|
||
|
ab[[column_num, i]] = ab[[i, column_num]]
|
||
|
if ab[column_num, column_num] == 0.0:
|
||
|
raise ValueError("Matrix is not correct")
|
||
|
else:
|
||
|
pass
|
||
|
if column_num != 0:
|
||
|
for i in range(column_num, num_of_rows):
|
||
|
ab[i, :] -= (
|
||
|
ab[i, column_num - 1]
|
||
|
/ ab[column_num - 1, column_num - 1]
|
||
|
* ab[column_num - 1, :]
|
||
|
)
|
||
|
|
||
|
# Upper triangular matrix
|
||
|
for column_num in range(num_of_rows):
|
||
|
for i in range(column_num, num_of_columns):
|
||
|
if abs(ab[i][column_num]) > abs(ab[column_num][column_num]):
|
||
|
ab[[column_num, i]] = ab[[i, column_num]]
|
||
|
if ab[column_num, column_num] == 0.0:
|
||
|
raise ValueError("Matrix is not correct")
|
||
|
else:
|
||
|
pass
|
||
|
if column_num != 0:
|
||
|
for i in range(column_num, num_of_rows):
|
||
|
ab[i, :] -= (
|
||
|
ab[i, column_num - 1]
|
||
|
/ ab[column_num - 1, column_num - 1]
|
||
|
* ab[column_num - 1, :]
|
||
|
)
|
||
|
|
||
|
# Find x vector (Back Substitution)
|
||
|
for column_num in range(num_of_rows - 1, -1, -1):
|
||
|
x = ab[column_num, -1] / ab[column_num, column_num]
|
||
|
x_lst.insert(0, x)
|
||
|
for i in range(column_num - 1, -1, -1):
|
||
|
ab[i, -1] -= ab[i, column_num] * x
|
||
|
|
||
|
# Return the solution vector
|
||
|
return np.asarray(x_lst)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
from doctest import testmod
|
||
|
from pathlib import Path
|
||
|
|
||
|
testmod()
|
||
|
file_path = Path(__file__).parent / "matrix.txt"
|
||
|
try:
|
||
|
matrix = np.loadtxt(file_path)
|
||
|
except FileNotFoundError:
|
||
|
print(f"Error: {file_path} not found. Using default matrix instead.")
|
||
|
|
||
|
# Example usage:
|
||
|
print(f"Matrix:\n{matrix}")
|
||
|
print(f"{solve_linear_system(matrix) = }")
|