Python/data_structures/Binary Tree/binary_seach_tree.py

101 lines
1.9 KiB
Python
Raw Normal View History

'''
A binary search Tree
'''
class Node:
def __init__(self, label):
self.label = label
self.left = None
self.rigt = None
def getLabel(self):
return self.label
def setLabel(self, label):
self.label = label
def getLeft(self):
return self.left
def setLeft(self, left):
self.left = left
def getRight(self):
return self.rigt
def setRight(self, right):
self.rigt = right
class BinarySearchTree:
def __init__(self):
self.root = None
def insert(self, label):
#Create a new Node
node = Node(label)
if self.empty():
self.root = node
else:
dad_node = None
curr_node = self.root
while True:
if curr_node != None:
dad_node = curr_node
if node.getLabel() < curr_node.getLabel():
curr_node = curr_node.getLeft()
else:
curr_node = curr_node.getRight()
else:
if node.getLabel() < dad_node.getLabel():
dad_node.setLeft(node)
else:
dad_node.setRight(node)
break
def empty(self):
if self.root == None:
return True
return False
def preShow(self, curr_node):
if curr_node != None:
print(curr_node.getLabel())
print ('\n')
self.preShow(curr_node.getLeft())
self.preShow(curr_node.getRight())
def getRoot(self):
return self.root
'''
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
'''
t = BinarySearchTree()
t.insert(8)
t.insert(3)
t.insert(1)
t.insert(6)
t.insert(4)
t.insert(7)
t.insert(10)
t.insert(14)
t.insert(13)
t.preShow(t.getRoot())