mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-19 00:37:02 +00:00
34 lines
773 B
Python
34 lines
773 B
Python
|
import math
|
||
|
import numpy
|
||
|
|
||
|
def LUDecompose (table): #table that contains our data
|
||
|
#table has to be a square array so we need to check first
|
||
|
rows,columns=numpy.shape(table)
|
||
|
L=numpy.zeros((rows,columns))
|
||
|
U=numpy.zeros((rows,columns))
|
||
|
if rows!=columns:
|
||
|
return
|
||
|
for i in range (columns):
|
||
|
for j in range(i-1):
|
||
|
sum=0
|
||
|
for k in range (j-1):
|
||
|
sum+=L[i][k]*U[k][j]
|
||
|
L[i][j]=(table[i][j]-sum)/U[j][j]
|
||
|
L[i][i]=1
|
||
|
for j in range(i-1,columns):
|
||
|
sum1=0
|
||
|
for k in range(i-1):
|
||
|
sum1+=L[i][k]*U[k][j]
|
||
|
U[i][j]=table[i][j]-sum1
|
||
|
return L,U
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
matrix =numpy.array([[2,-2,1],[0,1,2],[5,3,1]])
|
||
|
L,U = LUDecompose(matrix)
|
||
|
print(L)
|
||
|
print(U)
|