mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 17:20:16 +00:00
89 lines
2.1 KiB
Python
89 lines
2.1 KiB
Python
|
"""
|
|||
|
It was proposed by Christian Goldbach that every odd composite number can be
|
|||
|
written as the sum of a prime and twice a square.
|
|||
|
|
|||
|
9 = 7 + 2 × 12
|
|||
|
15 = 7 + 2 × 22
|
|||
|
21 = 3 + 2 × 32
|
|||
|
25 = 7 + 2 × 32
|
|||
|
27 = 19 + 2 × 22
|
|||
|
33 = 31 + 2 × 12
|
|||
|
|
|||
|
It turns out that the conjecture was false.
|
|||
|
|
|||
|
What is the smallest odd composite that cannot be written as the sum of a
|
|||
|
prime and twice a square?
|
|||
|
"""
|
|||
|
|
|||
|
from typing import List
|
|||
|
|
|||
|
seive = [True] * 100001
|
|||
|
i = 2
|
|||
|
while i * i <= 100000:
|
|||
|
if seive[i]:
|
|||
|
for j in range(i * i, 100001, i):
|
|||
|
seive[j] = False
|
|||
|
i += 1
|
|||
|
|
|||
|
|
|||
|
def is_prime(n: int) -> bool:
|
|||
|
"""
|
|||
|
Returns True if n is prime,
|
|||
|
False otherwise, for 2 <= n <= 100000
|
|||
|
>>> is_prime(87)
|
|||
|
False
|
|||
|
>>> is_prime(23)
|
|||
|
True
|
|||
|
>>> is_prime(25363)
|
|||
|
False
|
|||
|
"""
|
|||
|
return seive[n]
|
|||
|
|
|||
|
|
|||
|
odd_composites = [num for num in range(3, len(seive), 2) if not is_prime(num)]
|
|||
|
|
|||
|
|
|||
|
def compute_nums(n: int) -> List[int]:
|
|||
|
"""
|
|||
|
Returns a list of first n odd composite numbers which do
|
|||
|
not follow the conjecture.
|
|||
|
>>> compute_nums(1)
|
|||
|
[5777]
|
|||
|
>>> compute_nums(2)
|
|||
|
[5777, 5993]
|
|||
|
>>> compute_nums(0)
|
|||
|
Traceback (most recent call last):
|
|||
|
...
|
|||
|
ValueError: n must be >= 0
|
|||
|
>>> compute_nums("a")
|
|||
|
Traceback (most recent call last):
|
|||
|
...
|
|||
|
ValueError: n must be an integer
|
|||
|
>>> compute_nums(1.1)
|
|||
|
Traceback (most recent call last):
|
|||
|
...
|
|||
|
ValueError: n must be an integer
|
|||
|
|
|||
|
"""
|
|||
|
if not isinstance(n, int):
|
|||
|
raise ValueError("n must be an integer")
|
|||
|
if n <= 0:
|
|||
|
raise ValueError("n must be >= 0")
|
|||
|
|
|||
|
list_nums = []
|
|||
|
for num in range(len(odd_composites)):
|
|||
|
i = 0
|
|||
|
while 2 * i * i <= odd_composites[num]:
|
|||
|
rem = odd_composites[num] - 2 * i * i
|
|||
|
if is_prime(rem):
|
|||
|
break
|
|||
|
i += 1
|
|||
|
else:
|
|||
|
list_nums.append(odd_composites[num])
|
|||
|
if len(list_nums) == n:
|
|||
|
return list_nums
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
print(f"{compute_nums(1) = }")
|