mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
45 lines
1.4 KiB
Python
45 lines
1.4 KiB
Python
|
'''
|
||
|
The sum-of-subsetsproblem states that a set of non-negative integers, and a value M,
|
||
|
determine all possible subsets of the given set whose summation sum equal to given M.
|
||
|
|
||
|
Summation of the chosen numbers must be equal to given number M and one number can
|
||
|
be used only once.
|
||
|
'''
|
||
|
|
||
|
def generate_sum_of_subsets_soln(nums, max_sum):
|
||
|
result = []
|
||
|
path = []
|
||
|
num_index = 0
|
||
|
remaining_nums_sum = sum(nums)
|
||
|
create_state_space_tree(nums, max_sum, num_index, path,result, remaining_nums_sum)
|
||
|
return result
|
||
|
|
||
|
def create_state_space_tree(nums,max_sum,num_index,path,result, remaining_nums_sum):
|
||
|
'''
|
||
|
Creates a state space tree to iterate through each branch using DFS.
|
||
|
It terminates the branching of a node when any of the two conditions
|
||
|
given below satisfy.
|
||
|
This algorithm follows depth-fist-search and backtracks when the node is not branchable.
|
||
|
|
||
|
'''
|
||
|
if sum(path) > max_sum or (remaining_nums_sum + sum(path)) < max_sum:
|
||
|
return
|
||
|
if sum(path) == max_sum:
|
||
|
result.append(path)
|
||
|
return
|
||
|
for num_index in range(num_index,len(nums)):
|
||
|
create_state_space_tree(nums, max_sum, num_index + 1, path + [nums[num_index]], result, remaining_nums_sum - nums[num_index])
|
||
|
|
||
|
'''
|
||
|
remove the comment to take an input from the user
|
||
|
|
||
|
print("Enter the elements")
|
||
|
nums = list(map(int, input().split()))
|
||
|
print("Enter max_sum sum")
|
||
|
max_sum = int(input())
|
||
|
|
||
|
'''
|
||
|
nums = [3, 34, 4, 12, 5, 2]
|
||
|
max_sum = 9
|
||
|
result = generate_sum_of_subsets_soln(nums,max_sum)
|
||
|
print(*result)
|