mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-01 00:41:09 +00:00
77 lines
1.7 KiB
Python
77 lines
1.7 KiB
Python
|
"""
|
||
|
Sum of all nodes in a binary tree.
|
||
|
|
||
|
Python implementation:
|
||
|
O(n) time complexity - Recurses through :meth:`depth_first_search`
|
||
|
with each element.
|
||
|
O(n) space complexity - At any point in time maximum number of stack
|
||
|
frames that could be in memory is `n`
|
||
|
"""
|
||
|
|
||
|
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from collections.abc import Iterator
|
||
|
|
||
|
|
||
|
class Node:
|
||
|
"""
|
||
|
A Node has a value variable and pointers to Nodes to its left and right.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, value: int) -> None:
|
||
|
self.value = value
|
||
|
self.left: Node | None = None
|
||
|
self.right: Node | None = None
|
||
|
|
||
|
|
||
|
class BinaryTreeNodeSum:
|
||
|
r"""
|
||
|
The below tree looks like this
|
||
|
10
|
||
|
/ \
|
||
|
5 -3
|
||
|
/ / \
|
||
|
12 8 0
|
||
|
|
||
|
>>> tree = Node(10)
|
||
|
>>> sum(BinaryTreeNodeSum(tree))
|
||
|
10
|
||
|
|
||
|
>>> tree.left = Node(5)
|
||
|
>>> sum(BinaryTreeNodeSum(tree))
|
||
|
15
|
||
|
|
||
|
>>> tree.right = Node(-3)
|
||
|
>>> sum(BinaryTreeNodeSum(tree))
|
||
|
12
|
||
|
|
||
|
>>> tree.left.left = Node(12)
|
||
|
>>> sum(BinaryTreeNodeSum(tree))
|
||
|
24
|
||
|
|
||
|
>>> tree.right.left = Node(8)
|
||
|
>>> tree.right.right = Node(0)
|
||
|
>>> sum(BinaryTreeNodeSum(tree))
|
||
|
32
|
||
|
"""
|
||
|
|
||
|
def __init__(self, tree: Node) -> None:
|
||
|
self.tree = tree
|
||
|
|
||
|
def depth_first_search(self, node: Node | None) -> int:
|
||
|
if node is None:
|
||
|
return 0
|
||
|
return node.value + (
|
||
|
self.depth_first_search(node.left) + self.depth_first_search(node.right)
|
||
|
)
|
||
|
|
||
|
def __iter__(self) -> Iterator[int]:
|
||
|
yield self.depth_first_search(self.tree)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import doctest
|
||
|
|
||
|
doctest.testmod()
|