2020-04-30 09:54:20 +00:00
|
|
|
"""
|
|
|
|
Implementation Burke's algorithm (dithering)
|
|
|
|
"""
|
|
|
|
import numpy as np
|
2020-07-06 07:44:19 +00:00
|
|
|
from cv2 import destroyAllWindows, imread, imshow, waitKey
|
2020-04-30 09:54:20 +00:00
|
|
|
|
|
|
|
|
|
|
|
class Burkes:
|
|
|
|
"""
|
|
|
|
Burke's algorithm is using for converting grayscale image to black and white version
|
|
|
|
Source: Source: https://en.wikipedia.org/wiki/Dither
|
|
|
|
|
|
|
|
Note:
|
|
|
|
* Best results are given with threshold= ~1/2 * max greyscale value.
|
|
|
|
* This implementation get RGB image and converts it to greyscale in runtime.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, input_img, threshold: int):
|
|
|
|
self.min_threshold = 0
|
|
|
|
# max greyscale value for #FFFFFF
|
|
|
|
self.max_threshold = int(self.get_greyscale(255, 255, 255))
|
|
|
|
|
|
|
|
if not self.min_threshold < threshold < self.max_threshold:
|
2023-05-26 07:34:17 +00:00
|
|
|
msg = f"Factor value should be from 0 to {self.max_threshold}"
|
|
|
|
raise ValueError(msg)
|
2020-04-30 09:54:20 +00:00
|
|
|
|
|
|
|
self.input_img = input_img
|
|
|
|
self.threshold = threshold
|
|
|
|
self.width, self.height = self.input_img.shape[1], self.input_img.shape[0]
|
|
|
|
|
|
|
|
# error table size (+4 columns and +1 row) greater than input image because of
|
|
|
|
# lack of if statements
|
|
|
|
self.error_table = [
|
|
|
|
[0 for _ in range(self.height + 4)] for __ in range(self.width + 1)
|
|
|
|
]
|
|
|
|
self.output_img = np.ones((self.width, self.height, 3), np.uint8) * 255
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_greyscale(cls, blue: int, green: int, red: int) -> float:
|
|
|
|
"""
|
|
|
|
>>> Burkes.get_greyscale(3, 4, 5)
|
|
|
|
3.753
|
|
|
|
"""
|
|
|
|
return 0.114 * blue + 0.587 * green + 0.2126 * red
|
|
|
|
|
|
|
|
def process(self) -> None:
|
|
|
|
for y in range(self.height):
|
|
|
|
for x in range(self.width):
|
|
|
|
greyscale = int(self.get_greyscale(*self.input_img[y][x]))
|
|
|
|
if self.threshold > greyscale + self.error_table[y][x]:
|
|
|
|
self.output_img[y][x] = (0, 0, 0)
|
|
|
|
current_error = greyscale + self.error_table[x][y]
|
|
|
|
else:
|
|
|
|
self.output_img[y][x] = (255, 255, 255)
|
|
|
|
current_error = greyscale + self.error_table[x][y] - 255
|
|
|
|
"""
|
|
|
|
Burkes error propagation (`*` is current pixel):
|
2020-05-22 06:10:11 +00:00
|
|
|
|
|
|
|
* 8/32 4/32
|
|
|
|
2/32 4/32 8/32 4/32 2/32
|
2020-04-30 09:54:20 +00:00
|
|
|
"""
|
|
|
|
self.error_table[y][x + 1] += int(8 / 32 * current_error)
|
|
|
|
self.error_table[y][x + 2] += int(4 / 32 * current_error)
|
|
|
|
self.error_table[y + 1][x] += int(8 / 32 * current_error)
|
|
|
|
self.error_table[y + 1][x + 1] += int(4 / 32 * current_error)
|
|
|
|
self.error_table[y + 1][x + 2] += int(2 / 32 * current_error)
|
|
|
|
self.error_table[y + 1][x - 1] += int(4 / 32 * current_error)
|
|
|
|
self.error_table[y + 1][x - 2] += int(2 / 32 * current_error)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
# create Burke's instances with original images in greyscale
|
|
|
|
burkes_instances = [
|
|
|
|
Burkes(imread("image_data/lena.jpg", 1), threshold)
|
|
|
|
for threshold in (1, 126, 130, 140)
|
|
|
|
]
|
|
|
|
|
|
|
|
for burkes in burkes_instances:
|
|
|
|
burkes.process()
|
|
|
|
|
|
|
|
for burkes in burkes_instances:
|
|
|
|
imshow(
|
|
|
|
f"Original image with dithering threshold: {burkes.threshold}",
|
|
|
|
burkes.output_img,
|
|
|
|
)
|
|
|
|
|
|
|
|
waitKey(0)
|
|
|
|
destroyAllWindows()
|