mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-24 03:03:43 +00:00
63 lines
1.8 KiB
Python
63 lines
1.8 KiB
Python
|
"""
|
||
|
Project Euler Problem 115: https://projecteuler.net/problem=115
|
||
|
|
||
|
NOTE: This is a more difficult version of Problem 114
|
||
|
(https://projecteuler.net/problem=114).
|
||
|
|
||
|
A row measuring n units in length has red blocks
|
||
|
with a minimum length of m units placed on it, such that any two red blocks
|
||
|
(which are allowed to be different lengths) are separated by at least one black square.
|
||
|
|
||
|
Let the fill-count function, F(m, n),
|
||
|
represent the number of ways that a row can be filled.
|
||
|
|
||
|
For example, F(3, 29) = 673135 and F(3, 30) = 1089155.
|
||
|
|
||
|
That is, for m = 3, it can be seen that n = 30 is the smallest value
|
||
|
for which the fill-count function first exceeds one million.
|
||
|
|
||
|
In the same way, for m = 10, it can be verified that
|
||
|
F(10, 56) = 880711 and F(10, 57) = 1148904, so n = 57 is the least value
|
||
|
for which the fill-count function first exceeds one million.
|
||
|
|
||
|
For m = 50, find the least value of n
|
||
|
for which the fill-count function first exceeds one million.
|
||
|
"""
|
||
|
|
||
|
from itertools import count
|
||
|
|
||
|
|
||
|
def solution(min_block_length: int = 50) -> int:
|
||
|
"""
|
||
|
Returns for given minimum block length the least value of n
|
||
|
for which the fill-count function first exceeds one million
|
||
|
|
||
|
>>> solution(3)
|
||
|
30
|
||
|
|
||
|
>>> solution(10)
|
||
|
57
|
||
|
"""
|
||
|
|
||
|
fill_count_functions = [1] * min_block_length
|
||
|
|
||
|
for n in count(min_block_length):
|
||
|
fill_count_functions.append(1)
|
||
|
|
||
|
for block_length in range(min_block_length, n + 1):
|
||
|
for block_start in range(n - block_length):
|
||
|
fill_count_functions[n] += fill_count_functions[
|
||
|
n - block_start - block_length - 1
|
||
|
]
|
||
|
|
||
|
fill_count_functions[n] += 1
|
||
|
|
||
|
if fill_count_functions[n] > 1_000_000:
|
||
|
break
|
||
|
|
||
|
return n
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
print(f"{solution() = }")
|