Python/maths/binary_exponentiation.py

197 lines
5.1 KiB
Python
Raw Normal View History

"""
Binary Exponentiation
This is a method to find a^b in O(log b) time complexity and is one of the most commonly
used methods of exponentiation. The method is also useful for modular exponentiation,
when the solution to (a^b) % c is required.
To calculate a^b:
- If b is even, then a^b = (a * a)^(b / 2)
- If b is odd, then a^b = a * a^(b - 1)
Repeat until b = 1 or b = 0
2019-05-10 11:03:05 +00:00
For modular exponentiation, we use the fact that (a * b) % c = ((a % c) * (b % c)) % c
"""
def binary_exp_recursive(base: float, exponent: int) -> float:
"""
Computes a^b recursively, where a is the base and b is the exponent
>>> binary_exp_recursive(3, 5)
243
>>> binary_exp_recursive(11, 13)
34522712143931
>>> binary_exp_recursive(-1, 3)
-1
>>> binary_exp_recursive(0, 5)
0
>>> binary_exp_recursive(3, 1)
3
>>> binary_exp_recursive(3, 0)
1
>>> binary_exp_recursive(1.5, 4)
5.0625
>>> binary_exp_recursive(3, -1)
Traceback (most recent call last):
...
ValueError: Exponent must be a non-negative integer
"""
if exponent < 0:
raise ValueError("Exponent must be a non-negative integer")
if exponent == 0:
return 1
if exponent % 2 == 1:
return binary_exp_recursive(base, exponent - 1) * base
b = binary_exp_recursive(base, exponent // 2)
return b * b
def binary_exp_iterative(base: float, exponent: int) -> float:
"""
Computes a^b iteratively, where a is the base and b is the exponent
>>> binary_exp_iterative(3, 5)
243
>>> binary_exp_iterative(11, 13)
34522712143931
>>> binary_exp_iterative(-1, 3)
-1
>>> binary_exp_iterative(0, 5)
0
>>> binary_exp_iterative(3, 1)
3
>>> binary_exp_iterative(3, 0)
1
>>> binary_exp_iterative(1.5, 4)
5.0625
>>> binary_exp_iterative(3, -1)
Traceback (most recent call last):
...
ValueError: Exponent must be a non-negative integer
"""
if exponent < 0:
raise ValueError("Exponent must be a non-negative integer")
res: int | float = 1
while exponent > 0:
if exponent & 1:
res *= base
base *= base
exponent >>= 1
return res
def binary_exp_mod_recursive(base: float, exponent: int, modulus: int) -> float:
"""
Computes a^b % c recursively, where a is the base, b is the exponent, and c is the
modulus
>>> binary_exp_mod_recursive(3, 4, 5)
1
>>> binary_exp_mod_recursive(11, 13, 7)
4
>>> binary_exp_mod_recursive(1.5, 4, 3)
2.0625
>>> binary_exp_mod_recursive(7, -1, 10)
Traceback (most recent call last):
...
ValueError: Exponent must be a non-negative integer
>>> binary_exp_mod_recursive(7, 13, 0)
Traceback (most recent call last):
...
ValueError: Modulus must be a positive integer
"""
if exponent < 0:
raise ValueError("Exponent must be a non-negative integer")
if modulus <= 0:
raise ValueError("Modulus must be a positive integer")
if exponent == 0:
2019-05-10 11:03:05 +00:00
return 1
if exponent % 2 == 1:
return (binary_exp_mod_recursive(base, exponent - 1, modulus) * base) % modulus
r = binary_exp_mod_recursive(base, exponent // 2, modulus)
return (r * r) % modulus
2019-05-10 11:03:05 +00:00
def binary_exp_mod_iterative(base: float, exponent: int, modulus: int) -> float:
"""
Computes a^b % c iteratively, where a is the base, b is the exponent, and c is the
modulus
>>> binary_exp_mod_iterative(3, 4, 5)
1
>>> binary_exp_mod_iterative(11, 13, 7)
4
>>> binary_exp_mod_iterative(1.5, 4, 3)
2.0625
>>> binary_exp_mod_iterative(7, -1, 10)
Traceback (most recent call last):
...
ValueError: Exponent must be a non-negative integer
>>> binary_exp_mod_iterative(7, 13, 0)
Traceback (most recent call last):
...
ValueError: Modulus must be a positive integer
"""
if exponent < 0:
raise ValueError("Exponent must be a non-negative integer")
if modulus <= 0:
raise ValueError("Modulus must be a positive integer")
res: int | float = 1
while exponent > 0:
if exponent & 1:
res = ((res % modulus) * (base % modulus)) % modulus
base *= base
exponent >>= 1
return res
if __name__ == "__main__":
from timeit import timeit
a = 1269380576
b = 374
c = 34
runs = 100_000
print(
timeit(
f"binary_exp_recursive({a}, {b})",
setup="from __main__ import binary_exp_recursive",
number=runs,
)
)
print(
timeit(
f"binary_exp_iterative({a}, {b})",
setup="from __main__ import binary_exp_iterative",
number=runs,
)
)
print(
timeit(
f"binary_exp_mod_recursive({a}, {b}, {c})",
setup="from __main__ import binary_exp_mod_recursive",
number=runs,
)
)
print(
timeit(
f"binary_exp_mod_iterative({a}, {b}, {c})",
setup="from __main__ import binary_exp_mod_iterative",
number=runs,
)
)