2019-07-16 23:09:53 +00:00
|
|
|
"""
|
2020-10-25 03:23:16 +00:00
|
|
|
Project Euler Problem 9: https://projecteuler.net/problem=9
|
|
|
|
|
|
|
|
Special Pythagorean triplet
|
2020-10-08 11:21:32 +00:00
|
|
|
|
2019-07-16 23:09:53 +00:00
|
|
|
A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
|
2020-10-25 03:23:16 +00:00
|
|
|
|
2019-07-16 23:09:53 +00:00
|
|
|
a^2 + b^2 = c^2
|
2020-10-25 03:23:16 +00:00
|
|
|
|
2019-07-16 23:09:53 +00:00
|
|
|
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
|
2018-10-19 12:48:28 +00:00
|
|
|
|
2019-07-16 23:09:53 +00:00
|
|
|
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
2020-10-25 03:23:16 +00:00
|
|
|
Find the product a*b*c.
|
|
|
|
|
|
|
|
References:
|
|
|
|
- https://en.wikipedia.org/wiki/Pythagorean_triple
|
2019-07-16 23:09:53 +00:00
|
|
|
"""
|
2019-10-05 05:14:13 +00:00
|
|
|
|
|
|
|
|
2020-10-08 11:21:32 +00:00
|
|
|
def solution(n: int = 1000) -> int:
|
2019-07-16 23:09:53 +00:00
|
|
|
"""
|
2020-10-25 03:23:16 +00:00
|
|
|
Return the product of a,b,c which are Pythagorean Triplet that satisfies
|
|
|
|
the following:
|
|
|
|
1. a < b < c
|
|
|
|
2. a**2 + b**2 = c**2
|
|
|
|
3. a + b + c = n
|
|
|
|
|
|
|
|
>>> solution(36)
|
|
|
|
1620
|
|
|
|
>>> solution(126)
|
|
|
|
66780
|
2019-07-16 23:09:53 +00:00
|
|
|
"""
|
2020-10-25 03:23:16 +00:00
|
|
|
|
2019-07-16 23:09:53 +00:00
|
|
|
product = -1
|
2020-10-08 11:21:32 +00:00
|
|
|
candidate = 0
|
2019-07-16 23:09:53 +00:00
|
|
|
for a in range(1, n // 3):
|
2020-10-25 03:23:16 +00:00
|
|
|
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
|
2019-07-16 23:09:53 +00:00
|
|
|
b = (n * n - 2 * a * n) // (2 * n - 2 * a)
|
|
|
|
c = n - a - b
|
|
|
|
if c * c == (a * a + b * b):
|
2020-10-08 11:21:32 +00:00
|
|
|
candidate = a * b * c
|
|
|
|
if candidate >= product:
|
|
|
|
product = candidate
|
2019-07-16 23:09:53 +00:00
|
|
|
return product
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2020-10-25 03:23:16 +00:00
|
|
|
print(f"{solution() = }")
|