Python/maths/simpson_rule.py

52 lines
1.1 KiB
Python
Raw Normal View History

"""
2018-10-19 12:48:28 +00:00
Numerical integration or quadrature for a smooth function f with known values at x_i
This method is the classical approch of suming 'Equally Spaced Abscissas'
2018-10-19 12:48:28 +00:00
method 2:
2018-10-19 12:48:28 +00:00
"Simpson Rule"
"""
2019-10-05 05:14:13 +00:00
2018-10-19 12:48:28 +00:00
def method_2(boundary, steps):
2019-10-05 05:14:13 +00:00
# "Simpson Rule"
# int(f) = delta_x/2 * (b-a)/3*(f1 + 4f2 + 2f_3 + ... + fn)
h = (boundary[1] - boundary[0]) / steps
a = boundary[0]
b = boundary[1]
2019-10-05 05:14:13 +00:00
x_i = make_points(a, b, h)
y = 0.0
2019-10-05 05:14:13 +00:00
y += (h / 3.0) * f(a)
cnt = 2
for i in x_i:
2019-10-05 05:14:13 +00:00
y += (h / 3) * (4 - 2 * (cnt % 2)) * f(i)
cnt += 1
2019-10-05 05:14:13 +00:00
y += (h / 3.0) * f(b)
return y
2019-10-05 05:14:13 +00:00
def make_points(a, b, h):
x = a + h
2019-10-05 05:14:13 +00:00
while x < (b - h):
yield x
x = x + h
2018-10-19 12:48:28 +00:00
2019-10-05 05:14:13 +00:00
def f(x): # enter your function here
y = (x - 0) * (x - 0)
return y
2018-10-19 12:48:28 +00:00
2019-10-05 05:14:13 +00:00
2018-10-19 12:48:28 +00:00
def main():
2019-10-05 05:14:13 +00:00
a = 0.0 # Lower bound of integration
b = 1.0 # Upper bound of integration
steps = 10.0 # define number of steps or resolution
boundary = [a, b] # define boundary of integration
y = method_2(boundary, steps)
2019-10-05 05:14:13 +00:00
print("y = {0}".format(y))
2018-10-19 12:48:28 +00:00
2019-10-05 05:14:13 +00:00
if __name__ == "__main__":
main()