2022-10-31 17:32:54 +00:00
|
|
|
"""
|
|
|
|
Build the quantum fourier transform (qft) for a desire
|
|
|
|
number of quantum bits using Qiskit framework. This
|
|
|
|
experiment run in IBM Q simulator with 10000 shots.
|
|
|
|
This circuit can be use as a building block to design
|
|
|
|
the Shor's algorithm in quantum computing. As well as,
|
|
|
|
quantum phase estimation among others.
|
|
|
|
.
|
|
|
|
References:
|
|
|
|
https://en.wikipedia.org/wiki/Quantum_Fourier_transform
|
|
|
|
https://qiskit.org/textbook/ch-algorithms/quantum-fourier-transform.html
|
|
|
|
"""
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import qiskit
|
|
|
|
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
|
|
|
|
|
|
|
|
|
|
|
|
def quantum_fourier_transform(number_of_qubits: int = 3) -> qiskit.result.counts.Counts:
|
|
|
|
"""
|
|
|
|
# >>> quantum_fourier_transform(2)
|
|
|
|
# {'00': 2500, '01': 2500, '11': 2500, '10': 2500}
|
|
|
|
# quantum circuit for number_of_qubits = 3:
|
|
|
|
┌───┐
|
|
|
|
qr_0: ──────■──────────────────────■───────┤ H ├─X─
|
|
|
|
│ ┌───┐ │P(π/2) └───┘ │
|
|
|
|
qr_1: ──────┼────────■───────┤ H ├─■─────────────┼─
|
|
|
|
┌───┐ │P(π/4) │P(π/2) └───┘ │
|
|
|
|
qr_2: ┤ H ├─■────────■───────────────────────────X─
|
|
|
|
└───┘
|
|
|
|
cr: 3/═════════════════════════════════════════════
|
|
|
|
Args:
|
|
|
|
n : number of qubits
|
|
|
|
Returns:
|
|
|
|
qiskit.result.counts.Counts: distribute counts.
|
|
|
|
|
|
|
|
>>> quantum_fourier_transform(2)
|
|
|
|
{'00': 2500, '01': 2500, '10': 2500, '11': 2500}
|
|
|
|
>>> quantum_fourier_transform(-1)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: number of qubits must be > 0.
|
|
|
|
>>> quantum_fourier_transform('a')
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
TypeError: number of qubits must be a integer.
|
|
|
|
>>> quantum_fourier_transform(100)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: number of qubits too large to simulate(>10).
|
|
|
|
>>> quantum_fourier_transform(0.5)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: number of qubits must be exact integer.
|
|
|
|
"""
|
2022-11-20 11:00:27 +00:00
|
|
|
if isinstance(number_of_qubits, str):
|
2022-10-31 17:32:54 +00:00
|
|
|
raise TypeError("number of qubits must be a integer.")
|
2022-11-20 11:00:27 +00:00
|
|
|
if number_of_qubits <= 0:
|
2022-10-31 17:32:54 +00:00
|
|
|
raise ValueError("number of qubits must be > 0.")
|
|
|
|
if math.floor(number_of_qubits) != number_of_qubits:
|
|
|
|
raise ValueError("number of qubits must be exact integer.")
|
|
|
|
if number_of_qubits > 10:
|
|
|
|
raise ValueError("number of qubits too large to simulate(>10).")
|
|
|
|
|
|
|
|
qr = QuantumRegister(number_of_qubits, "qr")
|
|
|
|
cr = ClassicalRegister(number_of_qubits, "cr")
|
|
|
|
|
|
|
|
quantum_circuit = QuantumCircuit(qr, cr)
|
|
|
|
|
|
|
|
counter = number_of_qubits
|
|
|
|
|
|
|
|
for i in range(counter):
|
|
|
|
quantum_circuit.h(number_of_qubits - i - 1)
|
|
|
|
counter -= 1
|
|
|
|
for j in range(counter):
|
|
|
|
quantum_circuit.cp(np.pi / 2 ** (counter - j), j, counter)
|
|
|
|
|
|
|
|
for k in range(number_of_qubits // 2):
|
|
|
|
quantum_circuit.swap(k, number_of_qubits - k - 1)
|
|
|
|
|
|
|
|
# measure all the qubits
|
|
|
|
quantum_circuit.measure(qr, cr)
|
|
|
|
# simulate with 10000 shots
|
|
|
|
backend = Aer.get_backend("qasm_simulator")
|
|
|
|
job = execute(quantum_circuit, backend, shots=10000)
|
|
|
|
|
|
|
|
return job.result().get_counts(quantum_circuit)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
print(
|
|
|
|
f"Total count for quantum fourier transform state is: \
|
|
|
|
{quantum_fourier_transform(3)}"
|
|
|
|
)
|