2017-10-11 04:46:07 +00:00
|
|
|
__author__ = "Tobias Carryer"
|
|
|
|
|
|
|
|
from time import time
|
|
|
|
|
2019-10-05 05:14:13 +00:00
|
|
|
|
2017-10-11 04:46:07 +00:00
|
|
|
class LinearCongruentialGenerator(object):
|
|
|
|
"""
|
|
|
|
A pseudorandom number generator.
|
|
|
|
"""
|
2019-08-19 13:37:49 +00:00
|
|
|
|
2019-10-05 05:14:13 +00:00
|
|
|
def __init__(self, multiplier, increment, modulo, seed=int(time())):
|
2017-10-11 04:46:07 +00:00
|
|
|
"""
|
|
|
|
These parameters are saved and used when nextNumber() is called.
|
2019-08-19 13:37:49 +00:00
|
|
|
|
2017-10-11 04:46:07 +00:00
|
|
|
modulo is the largest number that can be generated (exclusive). The most
|
|
|
|
efficent values are powers of 2. 2^32 is a common value.
|
|
|
|
"""
|
|
|
|
self.multiplier = multiplier
|
|
|
|
self.increment = increment
|
|
|
|
self.modulo = modulo
|
|
|
|
self.seed = seed
|
2019-08-19 13:37:49 +00:00
|
|
|
|
2019-10-05 05:14:13 +00:00
|
|
|
def next_number(self):
|
2017-10-11 04:46:07 +00:00
|
|
|
"""
|
|
|
|
The smallest number that can be generated is zero.
|
|
|
|
The largest number that can be generated is modulo-1. modulo is set in the constructor.
|
|
|
|
"""
|
|
|
|
self.seed = (self.multiplier * self.seed + self.increment) % self.modulo
|
|
|
|
return self.seed
|
|
|
|
|
2019-10-05 05:14:13 +00:00
|
|
|
|
2017-10-11 04:46:07 +00:00
|
|
|
if __name__ == "__main__":
|
|
|
|
# Show the LCG in action.
|
2019-10-05 05:14:13 +00:00
|
|
|
lcg = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31)
|
|
|
|
while True:
|
|
|
|
print(lcg.next_number())
|