Python/searches/binary_search.py

320 lines
9.3 KiB
Python
Raw Normal View History

2016-07-29 13:03:20 +00:00
"""
This is pure Python implementation of binary search algorithms
2016-07-29 13:03:20 +00:00
For doctests run following command:
python -m doctest -v binary_search.py
2016-07-29 13:03:20 +00:00
or
python3 -m doctest -v binary_search.py
2016-07-29 13:03:20 +00:00
For manual testing run:
python binary_search.py
"""
2016-07-29 14:12:51 +00:00
import bisect
def bisect_left(sorted_collection, item, lo=0, hi=None):
"""
Locates the first element in a sorted array that is larger or equal to a given value.
It has the same interface as https://docs.python.org/3/library/bisect.html#bisect.bisect_left .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to bisect
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
:return: index i such that all values in sorted_collection[lo:i] are < item and all values in sorted_collection[i:hi] are >= item.
Examples:
>>> bisect_left([0, 5, 7, 10, 15], 0)
0
>>> bisect_left([0, 5, 7, 10, 15], 6)
2
>>> bisect_left([0, 5, 7, 10, 15], 20)
5
>>> bisect_left([0, 5, 7, 10, 15], 15, 1, 3)
3
>>> bisect_left([0, 5, 7, 10, 15], 6, 2)
2
"""
if hi is None:
hi = len(sorted_collection)
while lo < hi:
mid = (lo + hi) // 2
if sorted_collection[mid] < item:
lo = mid + 1
else:
hi = mid
return lo
def bisect_right(sorted_collection, item, lo=0, hi=None):
"""
Locates the first element in a sorted array that is larger than a given value.
It has the same interface as https://docs.python.org/3/library/bisect.html#bisect.bisect_right .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to bisect
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
:return: index i such that all values in sorted_collection[lo:i] are <= item and all values in sorted_collection[i:hi] are > item.
Examples:
>>> bisect_right([0, 5, 7, 10, 15], 0)
1
>>> bisect_right([0, 5, 7, 10, 15], 15)
5
>>> bisect_right([0, 5, 7, 10, 15], 6)
2
>>> bisect_right([0, 5, 7, 10, 15], 15, 1, 3)
3
>>> bisect_right([0, 5, 7, 10, 15], 6, 2)
2
"""
if hi is None:
hi = len(sorted_collection)
while lo < hi:
mid = (lo + hi) // 2
if sorted_collection[mid] <= item:
lo = mid + 1
else:
hi = mid
return lo
def insort_left(sorted_collection, item, lo=0, hi=None):
"""
Inserts a given value into a sorted array before other values with the same value.
It has the same interface as https://docs.python.org/3/library/bisect.html#bisect.insort_left .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to insert
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
Examples:
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_left(sorted_collection, 6)
>>> sorted_collection
[0, 5, 6, 7, 10, 15]
>>> sorted_collection = [(0, 0), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item = (5, 5)
>>> insort_left(sorted_collection, item)
>>> sorted_collection
[(0, 0), (5, 5), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item is sorted_collection[1]
True
>>> item is sorted_collection[2]
False
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_left(sorted_collection, 20)
>>> sorted_collection
[0, 5, 7, 10, 15, 20]
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_left(sorted_collection, 15, 1, 3)
>>> sorted_collection
[0, 5, 7, 15, 10, 15]
"""
sorted_collection.insert(bisect_left(sorted_collection, item, lo, hi), item)
def insort_right(sorted_collection, item, lo=0, hi=None):
"""
Inserts a given value into a sorted array after other values with the same value.
It has the same interface as https://docs.python.org/3/library/bisect.html#bisect.insort_right .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to insert
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
Examples:
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_right(sorted_collection, 6)
>>> sorted_collection
[0, 5, 6, 7, 10, 15]
>>> sorted_collection = [(0, 0), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item = (5, 5)
>>> insort_right(sorted_collection, item)
>>> sorted_collection
[(0, 0), (5, 5), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item is sorted_collection[1]
False
>>> item is sorted_collection[2]
True
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_right(sorted_collection, 20)
>>> sorted_collection
[0, 5, 7, 10, 15, 20]
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_right(sorted_collection, 15, 1, 3)
>>> sorted_collection
[0, 5, 7, 15, 10, 15]
"""
sorted_collection.insert(bisect_right(sorted_collection, item, lo, hi), item)
2016-07-29 13:03:20 +00:00
def binary_search(sorted_collection, item):
2016-07-29 14:12:51 +00:00
"""Pure implementation of binary search algorithm in Python
2016-07-29 13:03:20 +00:00
Be careful collection must be ascending sorted, otherwise result will be
unpredictable
:param sorted_collection: some ascending sorted collection with comparable items
2016-07-29 13:03:20 +00:00
:param item: item value to search
:return: index of found item or None if item is not found
Examples:
>>> binary_search([0, 5, 7, 10, 15], 0)
0
>>> binary_search([0, 5, 7, 10, 15], 15)
4
>>> binary_search([0, 5, 7, 10, 15], 5)
1
>>> binary_search([0, 5, 7, 10, 15], 6)
"""
left = 0
right = len(sorted_collection) - 1
while left <= right:
midpoint = left + (right - left) // 2
2016-07-29 13:03:20 +00:00
current_item = sorted_collection[midpoint]
if current_item == item:
return midpoint
2019-10-08 08:22:40 +00:00
elif item < current_item:
right = midpoint - 1
else:
2019-10-08 08:22:40 +00:00
left = midpoint + 1
2016-07-29 13:03:20 +00:00
return None
2016-07-29 14:12:51 +00:00
def binary_search_std_lib(sorted_collection, item):
"""Pure implementation of binary search algorithm in Python using stdlib
Be careful collection must be ascending sorted, otherwise result will be
unpredictable
:param sorted_collection: some ascending sorted collection with comparable items
2016-07-29 14:12:51 +00:00
:param item: item value to search
:return: index of found item or None if item is not found
Examples:
>>> binary_search_std_lib([0, 5, 7, 10, 15], 0)
0
>>> binary_search_std_lib([0, 5, 7, 10, 15], 15)
4
>>> binary_search_std_lib([0, 5, 7, 10, 15], 5)
1
>>> binary_search_std_lib([0, 5, 7, 10, 15], 6)
"""
index = bisect.bisect_left(sorted_collection, item)
if index != len(sorted_collection) and sorted_collection[index] == item:
return index
return None
2019-10-05 05:14:13 +00:00
2017-07-05 08:40:18 +00:00
def binary_search_by_recursion(sorted_collection, item, left, right):
"""Pure implementation of binary search algorithm in Python by recursion
Be careful collection must be ascending sorted, otherwise result will be
2017-07-05 08:40:18 +00:00
unpredictable
First recursion should be started with left=0 and right=(len(sorted_collection)-1)
:param sorted_collection: some ascending sorted collection with comparable items
2017-07-05 08:40:18 +00:00
:param item: item value to search
:return: index of found item or None if item is not found
Examples:
>>> binary_search_std_lib([0, 5, 7, 10, 15], 0)
0
>>> binary_search_std_lib([0, 5, 7, 10, 15], 15)
4
>>> binary_search_std_lib([0, 5, 7, 10, 15], 5)
1
>>> binary_search_std_lib([0, 5, 7, 10, 15], 6)
"""
2019-10-05 05:14:13 +00:00
if right < left:
return None
2017-07-05 08:40:18 +00:00
midpoint = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
2019-10-05 05:14:13 +00:00
return binary_search_by_recursion(sorted_collection, item, left, midpoint - 1)
2017-07-05 08:40:18 +00:00
else:
2019-10-05 05:14:13 +00:00
return binary_search_by_recursion(sorted_collection, item, midpoint + 1, right)
def __assert_sorted(collection):
"""Check if collection is ascending sorted, if not - raises :py:class:`ValueError`
:param collection: collection
:return: True if collection is ascending sorted
:raise: :py:class:`ValueError` if collection is not ascending sorted
Examples:
>>> __assert_sorted([0, 1, 2, 4])
True
>>> __assert_sorted([10, -1, 5])
Traceback (most recent call last):
...
ValueError: Collection must be ascending sorted
"""
if collection != sorted(collection):
2019-10-05 05:14:13 +00:00
raise ValueError("Collection must be ascending sorted")
return True
2019-10-05 05:14:13 +00:00
if __name__ == "__main__":
2016-07-29 13:03:20 +00:00
import sys
2019-10-05 05:14:13 +00:00
user_input = input("Enter numbers separated by comma:\n").strip()
collection = [int(item) for item in user_input.split(",")]
try:
__assert_sorted(collection)
except ValueError:
2019-10-05 05:14:13 +00:00
sys.exit("Sequence must be ascending sorted to apply binary search")
2019-10-05 05:14:13 +00:00
target_input = input("Enter a single number to be found in the list:\n")
2016-07-29 13:03:20 +00:00
target = int(target_input)
result = binary_search(collection, target)
if result is not None:
print(f"{target} found at positions: {result}")
2016-07-29 13:03:20 +00:00
else:
2019-10-05 05:14:13 +00:00
print("Not found")