mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-07 18:10:55 +00:00
90 lines
2.3 KiB
Python
90 lines
2.3 KiB
Python
|
"""
|
||
|
Calculate the rank of a matrix.
|
||
|
|
||
|
See: https://en.wikipedia.org/wiki/Rank_(linear_algebra)
|
||
|
"""
|
||
|
|
||
|
|
||
|
def rank_of_matrix(matrix: list[list[int | float]]) -> int:
|
||
|
"""
|
||
|
Finds the rank of a matrix.
|
||
|
Args:
|
||
|
matrix: The matrix as a list of lists.
|
||
|
Returns:
|
||
|
The rank of the matrix.
|
||
|
Example:
|
||
|
>>> matrix1 = [[1, 2, 3],
|
||
|
... [4, 5, 6],
|
||
|
... [7, 8, 9]]
|
||
|
>>> rank_of_matrix(matrix1)
|
||
|
2
|
||
|
>>> matrix2 = [[1, 0, 0],
|
||
|
... [0, 1, 0],
|
||
|
... [0, 0, 0]]
|
||
|
>>> rank_of_matrix(matrix2)
|
||
|
2
|
||
|
>>> matrix3 = [[1, 2, 3, 4],
|
||
|
... [5, 6, 7, 8],
|
||
|
... [9, 10, 11, 12]]
|
||
|
>>> rank_of_matrix(matrix3)
|
||
|
2
|
||
|
>>> rank_of_matrix([[2,3,-1,-1],
|
||
|
... [1,-1,-2,4],
|
||
|
... [3,1,3,-2],
|
||
|
... [6,3,0,-7]])
|
||
|
4
|
||
|
>>> rank_of_matrix([[2,1,-3,-6],
|
||
|
... [3,-3,1,2],
|
||
|
... [1,1,1,2]])
|
||
|
3
|
||
|
>>> rank_of_matrix([[2,-1,0],
|
||
|
... [1,3,4],
|
||
|
... [4,1,-3]])
|
||
|
3
|
||
|
>>> rank_of_matrix([[3,2,1],
|
||
|
... [-6,-4,-2]])
|
||
|
1
|
||
|
>>> rank_of_matrix([[],[]])
|
||
|
0
|
||
|
>>> rank_of_matrix([[1]])
|
||
|
1
|
||
|
>>> rank_of_matrix([[]])
|
||
|
0
|
||
|
"""
|
||
|
|
||
|
rows = len(matrix)
|
||
|
columns = len(matrix[0])
|
||
|
rank = min(rows, columns)
|
||
|
|
||
|
for row in range(rank):
|
||
|
# Check if diagonal element is not zero
|
||
|
if matrix[row][row] != 0:
|
||
|
# Eliminate all the elements below the diagonal
|
||
|
for col in range(row + 1, rows):
|
||
|
multiplier = matrix[col][row] / matrix[row][row]
|
||
|
for i in range(row, columns):
|
||
|
matrix[col][i] -= multiplier * matrix[row][i]
|
||
|
else:
|
||
|
# Find a non-zero diagonal element to swap rows
|
||
|
reduce = True
|
||
|
for i in range(row + 1, rows):
|
||
|
if matrix[i][row] != 0:
|
||
|
matrix[row], matrix[i] = matrix[i], matrix[row]
|
||
|
reduce = False
|
||
|
break
|
||
|
if reduce:
|
||
|
rank -= 1
|
||
|
for i in range(rows):
|
||
|
matrix[i][row] = matrix[i][rank]
|
||
|
|
||
|
# Reduce the row pointer by one to stay on the same row
|
||
|
row -= 1
|
||
|
|
||
|
return rank
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import doctest
|
||
|
|
||
|
doctest.testmod()
|