2019-07-16 23:09:53 +00:00
|
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
"""
|
|
|
|
|
The Fibonacci sequence is defined by the recurrence relation:
|
|
|
|
|
|
|
|
|
|
Fn = Fn−1 + Fn−2, where F1 = 1 and F2 = 1.
|
|
|
|
|
|
|
|
|
|
Hence the first 12 terms will be:
|
|
|
|
|
|
|
|
|
|
F1 = 1
|
|
|
|
|
F2 = 1
|
|
|
|
|
F3 = 2
|
|
|
|
|
F4 = 3
|
|
|
|
|
F5 = 5
|
|
|
|
|
F6 = 8
|
|
|
|
|
F7 = 13
|
|
|
|
|
F8 = 21
|
|
|
|
|
F9 = 34
|
|
|
|
|
F10 = 55
|
|
|
|
|
F11 = 89
|
|
|
|
|
F12 = 144
|
|
|
|
|
|
|
|
|
|
The 12th term, F12, is the first term to contain three digits.
|
|
|
|
|
|
|
|
|
|
What is the index of the first term in the Fibonacci sequence to contain 1000
|
|
|
|
|
digits?
|
|
|
|
|
"""
|
2018-10-19 12:48:28 +00:00
|
|
|
|
|
|
|
|
|
def fibonacci(n):
|
2019-07-16 23:09:53 +00:00
|
|
|
|
if n == 1 or type(n) is not int:
|
|
|
|
|
return 0
|
|
|
|
|
elif n == 2:
|
|
|
|
|
return 1
|
|
|
|
|
else:
|
|
|
|
|
sequence = [0, 1]
|
2019-08-19 13:37:49 +00:00
|
|
|
|
for i in range(2, n + 1):
|
2019-07-16 23:09:53 +00:00
|
|
|
|
sequence.append(sequence[i - 1] + sequence[i - 2])
|
|
|
|
|
|
|
|
|
|
return sequence[n]
|
2018-10-19 12:48:28 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fibonacci_digits_index(n):
|
2019-07-16 23:09:53 +00:00
|
|
|
|
digits = 0
|
|
|
|
|
index = 2
|
|
|
|
|
|
|
|
|
|
while digits < n:
|
|
|
|
|
index += 1
|
|
|
|
|
digits = len(str(fibonacci(index)))
|
|
|
|
|
|
|
|
|
|
return index
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def solution(n):
|
|
|
|
|
"""Returns the index of the first term in the Fibonacci sequence to contain
|
|
|
|
|
n digits.
|
2018-10-19 12:48:28 +00:00
|
|
|
|
|
2019-07-16 23:09:53 +00:00
|
|
|
|
>>> solution(1000)
|
|
|
|
|
4782
|
|
|
|
|
>>> solution(100)
|
|
|
|
|
476
|
|
|
|
|
>>> solution(50)
|
|
|
|
|
237
|
|
|
|
|
>>> solution(3)
|
|
|
|
|
12
|
|
|
|
|
"""
|
|
|
|
|
return fibonacci_digits_index(n)
|
2018-10-19 12:48:28 +00:00
|
|
|
|
|
|
|
|
|
|
2019-07-16 23:09:53 +00:00
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
print(solution(int(str(input()).strip())))
|