mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 17:20:16 +00:00
40 lines
1.2 KiB
Python
40 lines
1.2 KiB
Python
|
"""
|
||
|
Given a string s, partition s such that every substring of the
|
||
|
partition is a palindrome.
|
||
|
Find the minimum cuts needed for a palindrome partitioning of s.
|
||
|
|
||
|
Time Complexity: O(n^2)
|
||
|
Space Complexity: O(n^2)
|
||
|
For other explanations refer to: https://www.youtube.com/watch?v=_H8V5hJUGd0
|
||
|
"""
|
||
|
|
||
|
|
||
|
def find_minimum_partitions(string: str) -> int:
|
||
|
"""
|
||
|
Returns the minimum cuts needed for a palindrome partitioning of string
|
||
|
|
||
|
>>> find_minimum_partitions("aab")
|
||
|
1
|
||
|
>>> find_minimum_partitions("aaa")
|
||
|
0
|
||
|
>>> find_minimum_partitions("ababbbabbababa")
|
||
|
3
|
||
|
"""
|
||
|
length = len(string)
|
||
|
cut = [0] * length
|
||
|
is_palindromic = [[False for i in range(length)] for j in range(length)]
|
||
|
for i, c in enumerate(string):
|
||
|
mincut = i
|
||
|
for j in range(i + 1):
|
||
|
if c == string[j] and (i - j < 2 or is_palindromic[j + 1][i - 1]):
|
||
|
is_palindromic[j][i] = True
|
||
|
mincut = min(mincut, 0 if j == 0 else (cut[j - 1] + 1))
|
||
|
cut[i] = mincut
|
||
|
return cut[length - 1]
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
s = input("Enter the string: ").strip()
|
||
|
ans = find_minimum_partitions(s)
|
||
|
print(f"Minimum number of partitions required for the '{s}' is {ans}")
|