Python/machine_learning/polymonial_regression.py

38 lines
1.2 KiB
Python
Raw Normal View History

import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/position_salaries.csv')
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
poly_reg = PolynomialFeatures(degree=4)
X_poly = poly_reg.fit_transform(X)
pol_reg = LinearRegression()
pol_reg.fit(X_poly, y)
# Visualizing the Polymonial Regression results
def viz_polymonial():
plt.scatter(X, y, color='red')
plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color='blue')
plt.title('Truth or Bluff (Linear Regression)')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()
return
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
#output should be 132148.43750003