mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 13:31:07 +00:00
103 lines
3.1 KiB
Python
103 lines
3.1 KiB
Python
|
from __future__ import print_function
|
||
|
|
||
|
grid = [[0, 1, 0, 0, 0, 0],
|
||
|
[0, 1, 0, 0, 0, 0],#0 are free path whereas 1's are obstacles
|
||
|
[0, 1, 0, 0, 0, 0],
|
||
|
[0, 1, 0, 0, 1, 0],
|
||
|
[0, 0, 0, 0, 1, 0]]
|
||
|
|
||
|
'''
|
||
|
heuristic = [[9, 8, 7, 6, 5, 4],
|
||
|
[8, 7, 6, 5, 4, 3],
|
||
|
[7, 6, 5, 4, 3, 2],
|
||
|
[6, 5, 4, 3, 2, 1],
|
||
|
[5, 4, 3, 2, 1, 0]]'''
|
||
|
|
||
|
init = [0, 0]
|
||
|
goal = [len(grid)-1, len(grid[0])-1] #all coordinates are given in format [y,x]
|
||
|
cost = 1
|
||
|
|
||
|
#the cost map which pushes the path closer to the goal
|
||
|
heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
|
||
|
for i in range(len(grid)):
|
||
|
for j in range(len(grid[0])):
|
||
|
heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1])
|
||
|
if grid[i][j] == 1:
|
||
|
heuristic[i][j] = 99 #added extra penalty in the heuristic map
|
||
|
|
||
|
|
||
|
#the actions we can take
|
||
|
delta = [[-1, 0 ], # go up
|
||
|
[ 0, -1], # go left
|
||
|
[ 1, 0 ], # go down
|
||
|
[ 0, 1 ]] # go right
|
||
|
|
||
|
|
||
|
#function to search the path
|
||
|
def search(grid,init,goal,cost,heuristic):
|
||
|
|
||
|
closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]# the referrence grid
|
||
|
closed[init[0]][init[1]] = 1
|
||
|
action = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]#the action grid
|
||
|
|
||
|
x = init[0]
|
||
|
y = init[1]
|
||
|
g = 0
|
||
|
f = g + heuristic[init[0]][init[0]]
|
||
|
cell = [[f, g, x, y]]
|
||
|
|
||
|
found = False # flag that is set when search is complete
|
||
|
resign = False # flag set if we can't find expand
|
||
|
|
||
|
while not found and not resign:
|
||
|
if len(cell) == 0:
|
||
|
resign = True
|
||
|
return "FAIL"
|
||
|
else:
|
||
|
cell.sort()#to choose the least costliest action so as to move closer to the goal
|
||
|
cell.reverse()
|
||
|
next = cell.pop()
|
||
|
x = next[2]
|
||
|
y = next[3]
|
||
|
g = next[1]
|
||
|
f = next[0]
|
||
|
|
||
|
|
||
|
if x == goal[0] and y == goal[1]:
|
||
|
found = True
|
||
|
else:
|
||
|
for i in range(len(delta)):#to try out different valid actions
|
||
|
x2 = x + delta[i][0]
|
||
|
y2 = y + delta[i][1]
|
||
|
if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 < len(grid[0]):
|
||
|
if closed[x2][y2] == 0 and grid[x2][y2] == 0:
|
||
|
g2 = g + cost
|
||
|
f2 = g2 + heuristic[x2][y2]
|
||
|
cell.append([f2, g2, x2, y2])
|
||
|
closed[x2][y2] = 1
|
||
|
action[x2][y2] = i
|
||
|
invpath = []
|
||
|
x = goal[0]
|
||
|
y = goal[1]
|
||
|
invpath.append([x, y])#we get the reverse path from here
|
||
|
while x != init[0] or y != init[1]:
|
||
|
x2 = x - delta[action[x][y]][0]
|
||
|
y2 = y - delta[action[x][y]][1]
|
||
|
x = x2
|
||
|
y = y2
|
||
|
invpath.append([x, y])
|
||
|
|
||
|
path = []
|
||
|
for i in range(len(invpath)):
|
||
|
path.append(invpath[len(invpath) - 1 - i])
|
||
|
print("ACTION MAP")
|
||
|
for i in range(len(action)):
|
||
|
print(action[i])
|
||
|
|
||
|
return path
|
||
|
|
||
|
a = search(grid,init,goal,cost,heuristic)
|
||
|
for i in range(len(a)):
|
||
|
print(a[i])
|
||
|
|