mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 21:41:08 +00:00
172 lines
6.3 KiB
Python
172 lines
6.3 KiB
Python
|
'''README, Author - Anurag Kumar(mailto:anuragkumarak95@gmail.com)
|
||
|
|
||
|
Requirements:
|
||
|
- sklearn
|
||
|
- numpy
|
||
|
- matplotlib
|
||
|
|
||
|
Python:
|
||
|
- 3.5
|
||
|
|
||
|
Inputs:
|
||
|
- X , a 2D numpy array of features.
|
||
|
- k , number of clusters to create.
|
||
|
- initial_centroids , initial centroid values generated by utility function(mentioned in usage).
|
||
|
- maxiter , maximum number of iterations to process.
|
||
|
- heterogeneity , empty list that will be filled with hetrogeneity values if passed to kmeans func.
|
||
|
|
||
|
Usage:
|
||
|
1. define 'k' value, 'X' features array and 'hetrogeneity' empty list
|
||
|
|
||
|
2. create initial_centroids,
|
||
|
initial_centroids = get_initial_centroids(
|
||
|
X,
|
||
|
k,
|
||
|
seed=0 # seed value for initial centroid generation, None for randomness(default=None)
|
||
|
)
|
||
|
|
||
|
3. find centroids and clusters using kmeans function.
|
||
|
|
||
|
centroids, cluster_assignment = kmeans(
|
||
|
X,
|
||
|
k,
|
||
|
initial_centroids,
|
||
|
maxiter=400,
|
||
|
record_heterogeneity=heterogeneity,
|
||
|
verbose=True # whether to print logs in console or not.(default=False)
|
||
|
)
|
||
|
|
||
|
|
||
|
4. Plot the loss function, hetrogeneity values for every iteration saved in hetrogeneity list.
|
||
|
plot_heterogeneity(
|
||
|
heterogeneity,
|
||
|
k
|
||
|
)
|
||
|
|
||
|
5. Have fun..
|
||
|
|
||
|
'''
|
||
|
from sklearn.metrics import pairwise_distances
|
||
|
import numpy as np
|
||
|
|
||
|
TAG = 'K-MEANS-CLUST/ '
|
||
|
|
||
|
def get_initial_centroids(data, k, seed=None):
|
||
|
'''Randomly choose k data points as initial centroids'''
|
||
|
if seed is not None: # useful for obtaining consistent results
|
||
|
np.random.seed(seed)
|
||
|
n = data.shape[0] # number of data points
|
||
|
|
||
|
# Pick K indices from range [0, N).
|
||
|
rand_indices = np.random.randint(0, n, k)
|
||
|
|
||
|
# Keep centroids as dense format, as many entries will be nonzero due to averaging.
|
||
|
# As long as at least one document in a cluster contains a word,
|
||
|
# it will carry a nonzero weight in the TF-IDF vector of the centroid.
|
||
|
centroids = data[rand_indices,:]
|
||
|
|
||
|
return centroids
|
||
|
|
||
|
def centroid_pairwise_dist(X,centroids):
|
||
|
return pairwise_distances(X,centroids,metric='euclidean')
|
||
|
|
||
|
def assign_clusters(data, centroids):
|
||
|
|
||
|
# Compute distances between each data point and the set of centroids:
|
||
|
# Fill in the blank (RHS only)
|
||
|
distances_from_centroids = centroid_pairwise_dist(data,centroids)
|
||
|
|
||
|
# Compute cluster assignments for each data point:
|
||
|
# Fill in the blank (RHS only)
|
||
|
cluster_assignment = np.argmin(distances_from_centroids,axis=1)
|
||
|
|
||
|
return cluster_assignment
|
||
|
|
||
|
def revise_centroids(data, k, cluster_assignment):
|
||
|
new_centroids = []
|
||
|
for i in range(k):
|
||
|
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
|
||
|
member_data_points = data[cluster_assignment==i]
|
||
|
# Compute the mean of the data points. Fill in the blank (RHS only)
|
||
|
centroid = member_data_points.mean(axis=0)
|
||
|
new_centroids.append(centroid)
|
||
|
new_centroids = np.array(new_centroids)
|
||
|
|
||
|
return new_centroids
|
||
|
|
||
|
def compute_heterogeneity(data, k, centroids, cluster_assignment):
|
||
|
|
||
|
heterogeneity = 0.0
|
||
|
for i in range(k):
|
||
|
|
||
|
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
|
||
|
member_data_points = data[cluster_assignment==i, :]
|
||
|
|
||
|
if member_data_points.shape[0] > 0: # check if i-th cluster is non-empty
|
||
|
# Compute distances from centroid to data points (RHS only)
|
||
|
distances = pairwise_distances(member_data_points, [centroids[i]], metric='euclidean')
|
||
|
squared_distances = distances**2
|
||
|
heterogeneity += np.sum(squared_distances)
|
||
|
|
||
|
return heterogeneity
|
||
|
|
||
|
from matplotlib import pyplot as plt
|
||
|
def plot_heterogeneity(heterogeneity, k):
|
||
|
plt.figure(figsize=(7,4))
|
||
|
plt.plot(heterogeneity, linewidth=4)
|
||
|
plt.xlabel('# Iterations')
|
||
|
plt.ylabel('Heterogeneity')
|
||
|
plt.title('Heterogeneity of clustering over time, K={0:d}'.format(k))
|
||
|
plt.rcParams.update({'font.size': 16})
|
||
|
plt.show()
|
||
|
|
||
|
def kmeans(data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False):
|
||
|
'''This function runs k-means on given data and initial set of centroids.
|
||
|
maxiter: maximum number of iterations to run.(default=500)
|
||
|
record_heterogeneity: (optional) a list, to store the history of heterogeneity as function of iterations
|
||
|
if None, do not store the history.
|
||
|
verbose: if True, print how many data points changed their cluster labels in each iteration'''
|
||
|
centroids = initial_centroids[:]
|
||
|
prev_cluster_assignment = None
|
||
|
|
||
|
for itr in range(maxiter):
|
||
|
if verbose:
|
||
|
print(itr, end='')
|
||
|
|
||
|
# 1. Make cluster assignments using nearest centroids
|
||
|
cluster_assignment = assign_clusters(data,centroids)
|
||
|
|
||
|
# 2. Compute a new centroid for each of the k clusters, averaging all data points assigned to that cluster.
|
||
|
centroids = revise_centroids(data,k, cluster_assignment)
|
||
|
|
||
|
# Check for convergence: if none of the assignments changed, stop
|
||
|
if prev_cluster_assignment is not None and \
|
||
|
(prev_cluster_assignment==cluster_assignment).all():
|
||
|
break
|
||
|
|
||
|
# Print number of new assignments
|
||
|
if prev_cluster_assignment is not None:
|
||
|
num_changed = np.sum(prev_cluster_assignment!=cluster_assignment)
|
||
|
if verbose:
|
||
|
print(' {0:5d} elements changed their cluster assignment.'.format(num_changed))
|
||
|
|
||
|
# Record heterogeneity convergence metric
|
||
|
if record_heterogeneity is not None:
|
||
|
# YOUR CODE HERE
|
||
|
score = compute_heterogeneity(data,k,centroids,cluster_assignment)
|
||
|
record_heterogeneity.append(score)
|
||
|
|
||
|
prev_cluster_assignment = cluster_assignment[:]
|
||
|
|
||
|
return centroids, cluster_assignment
|
||
|
|
||
|
# Mock test below
|
||
|
if False: # change to true to run this test case.
|
||
|
import sklearn.datasets as ds
|
||
|
dataset = ds.load_iris()
|
||
|
k = 3
|
||
|
heterogeneity = []
|
||
|
initial_centroids = get_initial_centroids(dataset['data'], k, seed=0)
|
||
|
centroids, cluster_assignment = kmeans(dataset['data'], k, initial_centroids, maxiter=400,
|
||
|
record_heterogeneity=heterogeneity, verbose=True)
|
||
|
plot_heterogeneity(heterogeneity, k)
|