Python/arithmetic_analysis/newton_raphson.py

54 lines
1.7 KiB
Python
Raw Normal View History

# Implementing Newton Raphson method in Python
# Author: Syed Haseeb Shah (github.com/QuantumNovice)
# The Newton-Raphson method (also known as Newton's method) is a way to
# quickly find a good approximation for the root of a real-valued function
from __future__ import annotations
2023-07-16 12:19:58 +05:30
from sympy import diff, symbols, sympify
def newton_raphson(func: str, a: float, precision: float = 10**-10) -> float:
"""Finds root from the point 'a' onwards by Newton-Raphson method
>>> newton_raphson("sin(x)", 2)
3.1415926536808043
>>> newton_raphson("x**2 - 5*x +2", 0.4)
2023-07-16 12:19:58 +05:30
0.4384471871911696
>>> newton_raphson("x**2 - 5", 0.1)
2.23606797749979
>>> newton_raphson("log(x)- 1", 2)
2.718281828458938
"""
x = a
symbol = symbols("x")
exp = sympify(
func
) # expressions to be represented symbolically and manipulated algebraically
exp_diff = diff(
exp, symbol
) # calculates the derivative value at the current x value
2023-07-16 12:19:58 +05:30
maximum_iterations = 100
for _ in range(maximum_iterations):
val = exp.subs(symbol, x)
diff_val = exp_diff.subs(symbol, x)
if abs(val) < precision:
return float(x)
2023-07-16 12:19:58 +05:30
x = x - (val / diff_val)
return float(x)
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}")
# Find root of polynomial
print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}")
# Find Square Root of 5
print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}")
# Exponential Roots
print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")