mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-05 09:57:01 +00:00
39 lines
1.1 KiB
Python
39 lines
1.1 KiB
Python
|
"""
|
||
|
Squareplus Activation Function
|
||
|
|
||
|
Use Case: Squareplus designed to enhance positive values and suppress negative values.
|
||
|
For more detailed information, you can refer to the following link:
|
||
|
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Squareplus
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def squareplus(vector: np.ndarray, beta: float) -> np.ndarray:
|
||
|
"""
|
||
|
Implements the SquarePlus activation function.
|
||
|
|
||
|
Parameters:
|
||
|
vector (np.ndarray): The input array for the SquarePlus activation.
|
||
|
beta (float): size of the curved region
|
||
|
|
||
|
Returns:
|
||
|
np.ndarray: The input array after applying the SquarePlus activation.
|
||
|
|
||
|
Formula: f(x) = ( x + sqrt(x^2 + b) ) / 2
|
||
|
|
||
|
Examples:
|
||
|
>>> squareplus(np.array([2.3, 0.6, -2, -3.8]), beta=2)
|
||
|
array([2.5 , 1.06811457, 0.22474487, 0.12731349])
|
||
|
|
||
|
>>> squareplus(np.array([-9.2, -0.3, 0.45, -4.56]), beta=3)
|
||
|
array([0.0808119 , 0.72891979, 1.11977651, 0.15893419])
|
||
|
"""
|
||
|
return (vector + np.sqrt(vector**2 + beta)) / 2
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import doctest
|
||
|
|
||
|
doctest.testmod()
|