2019-12-24 06:23:15 +00:00
|
|
|
import random
|
|
|
|
|
|
|
|
from .binary_exp_mod import bin_exp_mod
|
|
|
|
|
|
|
|
|
|
|
|
# This is a probabilistic check to test primality, useful for big numbers!
|
|
|
|
# if it's a prime, it will return true
|
|
|
|
# if it's not a prime, the chance of it returning true is at most 1/4**prec
|
2022-04-08 17:40:45 +00:00
|
|
|
def is_prime_big(n, prec=1000):
|
2019-12-24 06:23:15 +00:00
|
|
|
"""
|
2022-07-14 07:24:24 +00:00
|
|
|
>>> from maths.prime_check import is_prime
|
|
|
|
>>> # all(is_prime_big(i) == is_prime(i) for i in range(1000)) # 3.45s
|
|
|
|
>>> all(is_prime_big(i) == is_prime(i) for i in range(256))
|
2019-12-24 06:23:15 +00:00
|
|
|
True
|
|
|
|
"""
|
|
|
|
if n < 2:
|
|
|
|
return False
|
|
|
|
|
|
|
|
if n % 2 == 0:
|
|
|
|
return n == 2
|
|
|
|
|
|
|
|
# this means n is odd
|
|
|
|
d = n - 1
|
|
|
|
exp = 0
|
|
|
|
while d % 2 == 0:
|
|
|
|
d /= 2
|
|
|
|
exp += 1
|
|
|
|
|
|
|
|
# n - 1=d*(2**exp)
|
|
|
|
count = 0
|
|
|
|
while count < prec:
|
|
|
|
a = random.randint(2, n - 1)
|
|
|
|
b = bin_exp_mod(a, d, n)
|
|
|
|
if b != 1:
|
|
|
|
flag = True
|
2022-10-13 16:03:06 +00:00
|
|
|
for _ in range(exp):
|
2019-12-24 06:23:15 +00:00
|
|
|
if b == n - 1:
|
|
|
|
flag = False
|
|
|
|
break
|
|
|
|
b = b * b
|
|
|
|
b %= n
|
|
|
|
if flag:
|
|
|
|
return False
|
|
|
|
count += 1
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
n = abs(int(input("Enter bound : ").strip()))
|
|
|
|
print("Here's the list of primes:")
|
2022-04-08 17:40:45 +00:00
|
|
|
print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
|