2017-01-03 11:20:13 +00:00
|
|
|
"""
|
|
|
|
Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack.
|
|
|
|
"""
|
2018-07-22 19:06:53 +00:00
|
|
|
def MF_knapsack(i,wt,val,j):
|
|
|
|
'''
|
|
|
|
This code involves the concept of memory functions. Here we solve the subproblems which are needed
|
|
|
|
unlike the below example
|
|
|
|
F is a 2D array with -1s filled up
|
|
|
|
'''
|
|
|
|
global F # a global dp table for knapsack
|
|
|
|
if F[i][j] < 0:
|
|
|
|
if j < wt[i - 1]:
|
|
|
|
val = MF_knapsack(i - 1,wt,val,j)
|
|
|
|
else:
|
|
|
|
val = max(MF_knapsack(i - 1,wt,val,j),MF_knapsack(i - 1,wt,val,j - wt[i - 1]) + val[i - 1])
|
|
|
|
F[i][j] = val
|
|
|
|
return F[i][j]
|
|
|
|
|
2017-01-03 11:20:13 +00:00
|
|
|
def knapsack(W, wt, val, n):
|
|
|
|
dp = [[0 for i in range(W+1)]for j in range(n+1)]
|
|
|
|
|
|
|
|
for i in range(1,n+1):
|
|
|
|
for w in range(1,W+1):
|
|
|
|
if(wt[i-1]<=w):
|
|
|
|
dp[i][w] = max(val[i-1]+dp[i-1][w-wt[i-1]],dp[i-1][w])
|
|
|
|
else:
|
|
|
|
dp[i][w] = dp[i-1][w]
|
|
|
|
|
|
|
|
return dp[n][w]
|
2018-07-22 19:06:53 +00:00
|
|
|
|
2018-07-23 07:31:02 +00:00
|
|
|
if __name__ == '__main__':
|
2018-07-22 19:06:53 +00:00
|
|
|
'''
|
|
|
|
Adding test case for knapsack
|
|
|
|
'''
|
|
|
|
val = [3,2,4,4]
|
|
|
|
wt = [4,3,2,3]
|
|
|
|
n = 4
|
|
|
|
w = 6
|
|
|
|
F = [[0]*(w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)]
|
|
|
|
print(knapsack(w,wt,val,n))
|
|
|
|
print(MF_knapsack(n,wt,val,w)) # switched the n and w
|
|
|
|
|